바로가기메뉴

본문 바로가기 주메뉴 바로가기

logo

Distribution of Aucuba japonica in two contrasting geobotanical regions of Japan: An analysis of adaptation mode

Journal of Ecology and Environment / Journal of Ecology and Environment, (P)2287-8327; (E)2288-1220
2013, v.36 no.3, pp.173-181
https://doi.org/10.5141/ecoenv.2013.173
Md. Sohrab Ali (Department of Environment, E-16, Agarga)
Kihachiro Kikuzawa (Ishikawa Prefectural University)
  • Downloaded
  • Viewed

Abstract

Two varieties of Aucuba japonica differ in ways that can be considered adaptive to differing geo-climatic conditions in their respective distribution ranges. Irrespective of growth stage, the mean leaf size of A. japonica var. japonica was significantly larger than A. japonica var. borealis. Smaller leaf size and ultimately smaller stature of A. japonica var. borealis are an advantage under the higher snow load and lower temperatures in the forests along the East Sea where the variety grows. Snow load also acted as an important driving force for structural modifications of A. japonica var. borealis from cellular level in leaves to the organization of branch extension growth. Global warming by changing snowfall patterns in Japan may lead to range shifts in the two varieties of A. japonica.

keywords
adaptation, Aucuba japonica, ecotypic variation, geo-climate, plant growth attributes, snow effects

Reference

1.

Ali MS, Kikuzawa K. 2005a. Anisophylly in Aucuba japonica (Cornaceae): An outcome of spatial crowding in the bud. Can J Bot 83: 143-154.

2.

Ali MS, Kikuzawa K. 2005b. Shoot morphology of Aucuba japonica incurred by anisophylly: ecological implications. J Plant Res 118: 329-338.

3.

Ali MS, Kikuzawa K. 2012. Responses of different phytoelements to habitat light level and their dynamic convergence towards crown development of Aucuba japonica Thunb. var. japonica. J Ecol Field Biol 35: 177-188.

4.

Andersen PC, Knox GW, Norcini JG. 1991. Light intensity influences growth and leaf physiology of Aucuba japonica ‘Variegata’. Hortscience 26: 1485-1488.

5.

Bertin RI. 2008. Plant phenology and distribution in relation to recent climate change. J Torrey Bot Soc 135: 126-146.

6.

Chapin FS, Schulze ED, Mooney HA. 1990. The ecology and economics of storage in plants. Annu Rev Ecol Syst 21: 423-447.

7.

Dengler NG, Sánchez-Burgos AA. 1988. Effect of light level on the expression of anisophylly in Paradrymonia ciliosa (Gesneraceae). Bot Gaz 149: 158-165.

8.

Goebel K. 1900. Organography of Plants, especially of the Archegoniata and Spermaphyta. Clarendon Press, Oxford.

9.

Hara H. 1966. Taxonomic comparion between corresponding taxa of Spermatophyta in Eastern Himalaya and Japan. In: The Flora of Eastern Himalaya (Hara H, ed). University of Tokyo, Tokyo, pp 627-657.

10.

Hara N. 1980. Shoot development of Aucuba japonica I. Morphological study. Bot Mag Tokyo 93: 101-116.

11.

Isobe H, Kikuchi T. 1989. Differences in shoot form and age of Aucuba japonica Thunb. corresponding to the microlandforms on a hill slope. Ecol Rev 21: 277-281.

12.

Kawano S, Takasu H. 2004. Life history characteristics of Aucuba japonica Thunb. var. borealis Miyabe et Kudo (Cornaceae). In: Life History Monographs of Japanese Plants Vol. II: No. 2, Spring Plants (Kakiano S, ed). Hokkaidō Daigaku Tosho Kankōkai, Sapporo, pp 48.

13.

Kimball JS, McDonald KC, Zhao M. 2006. Spring thaw and its effect on terrestrial vegetation productivity in the western arctic observed from satellite microwave and optical remote sensing. Earth interact 10: 1-22.

14.

Kume A. 2005. Trees Adaptive to snow - Aucuba japonica var. borealis and Camellia japonica var. decumbens. In: Snow and Plants. The Botanical Society of Japan, Toyama, pp 17-20. (In Japanese)

15.

Kume A, Ino Y. 1993. Comparison of ecophysiological responses to heavy snow in two varieties of Aucuba japonica with different areas of distribution. Ecol Res 8: 111-121.

16.

Kume A, Ino Y. 2000. Differences in shoot size and allometry between two evergreen broad-leaved shrubs, Aucuba japonica varieties in two contrasting snowfall habitats. J Plant Res 113: 353-363.

17.

Kume A, Ino Y. 2001. Why is Aucuba japonica smaller in heavy snowfall areas? A growth simulation of evergreen broad-leaved shrubs based on shoot allometry, critical shoot sizes for flowering and photosynthetic production. J Plant Res 114: 67-74.

18.

Kurosawa S. 1979. Notes on chromosome numbers of Spermatophytes (2). J Jap Bot 54: 155-160.

19.

Kurosawa S. 1981. Notes on chromosome numbers of Spermatophytes (3). J Jap Bot 56: 245-251.

20.

Ohi T, Kajita T, Murata J. 2003. Distinct geographic structure as evidenced by chloroplast DNA haplotypes and ploidy level in Japanese Aucuba (Aucubaceae). Am J Bot 90: 1645-1652.

21.

Osada N, Takeda H. 2003. Branch Architecture, Light Interception and Crown Development in Saplings of a Plagiotropically Branching Tropical Tree, Polyalthia jenkinsii (Annonaceae). Ann Bot 91: 55-63.

22.

Parmesan C. 2006. Ecological and evolutionary responses to recent climate change. Annu Rev Ecol Evol S 37: 637-669.

23.

Takasoh T, Tobe T, Aida M. 1997. Method of sectioning for microscopic observation. In: Plant cell technology series 9: Protocols for observing plant cells (Fukuda H, Nishimura M, Nakamura K eds). Shujunsha Co. Ltd., Tokyo, pp 20-33. (in Japanese)

24.

Terashima I, Miyazawa SI, Hanba YT. 2001. Why are sun leaves thicker than shade leaves? – Consideration based on analysis of CO2 diffusion in the leaf. J Plant Res 114: 93-105.

25.

Wardlaw CW. 1952. Experimental and analytical studies of Pteridophytes: XVIII. The nutritional status of apex and morphogenesis. Ann Bot 16: 207-218.

26.

Yamada T, Okuda T, Abdullah M, Awang M, Furukawa A. 2000. The leaf development process and its significance for reducing self-shading of a tropical pioneer tree species. Oecologia 125: 476-482.

27.

Yano S, Terashima I. 2004. Developmental process of sun and shade leaves in Chenopodium album L. Plant Cell Environ 27: 781-793.

Journal of Ecology and Environment