바로가기메뉴

본문 바로가기 주메뉴 바로가기

ACOMS+ 및 학술지 리포지터리 설명회

  • 한국과학기술정보연구원(KISTI) 서울분원 대회의실(별관 3층)
  • 2024년 07월 03일(수) 13:30
 

logo

  • ENGLISH
  • P-ISSN2287-8327
  • E-ISSN2288-1220
  • SCOPUS, KCI

Distribution and attachment characteristics of Sida crystallina (O.F. Müller, 1776) in lentic freshwater ecosystems of South Korea

Journal of Ecology and Environment / Journal of Ecology and Environment, (P)2287-8327; (E)2288-1220
2016, v.40 no.1, pp.45-54
https://doi.org/10.1186/s41610-016-0006-z
최종윤 (국립생태원)
정광석 (부산대학교)
김승기 (Nakdong River Environment Research Center)
손세환 (국립생태원)
주기재 (부산대학교)

Abstract

Background: Macrophytes are commonly utilised as habitat by epiphytic species; thus, complex macrophyte structures can support high diversities and abundances of epiphytic species. We tested the hypothesis that the presence of aquatic macrophytes is an important factor determining Sida crystallina (O.F. Müller, 1776) distribution. Results: An ecological survey was conducted in 147 lentic freshwater bodies. S. crystallina was frequently observed, and its density was strongly associated with macrophyte abundance. S. crystallina was found on emergent plant species such as Phragmites australis and Paspalum distichum, attached to the stem surfaces by adhesive substances secreted by the nuchal organ. Thus, S. crystallina was more strongly attached to macrophytes than to other epiphytic cladoceran species. We found higher densities of S. crystallina in filtered water with increased macrophyte shaking effort (i.e. 10, 20, 40, or 80 times). S. crystallina attachment was not related to fish predation. Stable isotope analysis showed that S. crystallina utilises epiphytic organic matter (EOM) on macrophytes as a food source. Conclusions: Consequently, S. crystallina seems to have a strong association with species-specific macrophyte biomass than with other cladoceran species, which may contribute to this species’ predominance in various freshwater ecosystems where macrophytes are abundant.

keywords
Sida crystallina, Aquatic macrophytes, Attachment characteristics, Stable isotope analysis, Lentic freshwater ecosystems

참고문헌

1.

Balayla, D. J., & Moss, B. (2003). Spatial patterns and population dynamics of plant-associated microcrustacea (cladocera) in an English shallow lake (Little Mere, Cheshire). Aquatic Ecology, 37, 417–435.

2.

Burkett, V., & Kusler, J. (2000). Climate change: potential impacts and interactions in wetlands of the United States. Journal of the American Water Resources Association, 36, 313–320.

3.

Burks, R., Lodge, D. M., Jeppesen, E., & Lauridsen, T. L. (2002). Diel horizontal migration of zooplankton: costs and benefits of inhabiting littoral zones. Freshwater Biology, 47, 343–365.

4.

Castilho-Noll, M. S. M., Câmara, C. F., Chicone, M. F., & Shibata, E. H. (2010). Pelagic and littoral cladocerans (Crustacea, Anomopoda and Ctenopoda) from reservoirs of the Northwest of São Paulo State, Brazil. Biota Neotropica, 10, 21–30.

5.

Cattaneo, A., Galanti, G. G., Gentinetta, S., & Romo, S. (1998). Epiphytic algae and macroinvertebrates on submerged and floating-leaved macrophytes in an Italian lake. Freshwater Biology, 39, 725–740.

6.

Choi, J. Y., Jeong, K. S., La, G. H., Kim, H. W., Chang, K. H., & Joo, G. J. (2011). Interannual variability of a zooplankton community: the importance of summer concentrated rainfall in a regulated river ecosystem. Journal of Ecology and Field Biologyl, 34, 49–58.

7.

Choi, J. Y., Jeong, K. S., La, G. H., & Joo, G. J. (2014). Effect of removal of freefloating macrophytes on zooplankton habitat in shallow wetland. Knowledge Management Aquatic Ecosystems, 414, 11.

8.

Choi, J. Y., Jeong, K. S., La, G. H., Kim, S. K., & Joo, G. J. (2014). Sustainment of epiphytic microinvertebrate assemblage in relation with different aquatic plant microhabitats in freshwater wetlands (South Korea). Journal of Limnology, 73, 197–202.

9.

Choi, J. Y., Jeong, K. S., Kim, S. K., La, G. H., Chang, K. H., & Joo, G. J. (2014). Role of macrophytes as microhabitats for zooplankton community in lentic freshwater ecosystems of South Korea. Ecology Information, 24, 177–185.

10.

De Meester, L., & Cousyn, C. (1997). The change in phototactic behaviour of a Daphnia magna clone in the presence of fish kairomones: the effect of exposure time. In Cladocera: the Biology of Model Organisms (pp. 169–175). Netherlands: Springer.

11.

Denny, P. (1994). Biodiversity and wetlands. Wetland Ecology and Management, 3, 55–61.

12.

Downing, J. A., & Peters, R. H. (1980). The effect of body size and food concentration on the in situ filtering rate of Sida crytallina. Limnology and Ocreanography, 25, 883–895.

13.

Fairchild, G. W. (1981). Movement and microdistribution of Sida crystallina and other littoral microcrustacea. Ecology, 62, 1341–1354.

14.

Findlay, C. S. T., & Bourdages, J. (2000). Response time of wetland biodiversity to road construction on adjacent lands. Conservation Biology, 14, 86–94.

15.

Gyllström, M., Hansson, L. A., Jeppesen, E., Garcia-Criado, F., Gross, E., Irvine, K., Kairesalo, T., Kornijow, R., Miracle, M., Nykänen, M., Nõges, T., Romo, S.,Stephen, D., Van Donk, E., & Moss, B. (2005). The role of climate in shaping zooplankton communities of shallow lakes. Limnology and Ocreanography,50, 2008–2021.

16.

Jeong, K. S., Kim, D. K., & Joo, G. J. (2007). Delayed influence of dam storage and discharge on the determination of seasonal proliferations of Microcystis aeruginosa and Stephanodiscus hantzschii in a regulated river system of the lower Nakdong River (South Korea). Water Research, 41, 1269–1279.

17.

Jeppesen, E., Lauridsen, T. L., Kairesalo, T., & Perrow, M. R. (1998). Impact of submerged macrophytes on fish-zooplankton interactions in lakes. In The structuring role of submerged macrophytes in lakes (pp. 91–114). New York:Springer.

18.

Korean Ministry of Environment. (2006). [Inland wetlands investigation: Sandle Wetland, Hwapo Wetland, Jangcheok Wetland and Gumgang Wetland]. [Report in Korean] (p. 348). Seoul: Korean Ministry of Environment & National Wetlands Center.

19.

Kotov, A. A., & Boikova, O. (1998). Comparative analysis of the late embryogenesis of Sida crystallina (O.F. Müller, 1776) and Diaphanosoma brachyurum (Lievin, 1848) (Crustacea: Branchiopoda: Ctenopoda). Hydrobiologia, 380, 103–125.

20.

Kuczyńska-Kippen, N. M., & Nagengast, B. (2006). The influence of the spatial structure of hydromacrophytes and differentiating habitat on the structure of rotifer and cladoceran communities. Hydrobiologia, 559, 203–212.

21.

Lauridsen, T. L., & Lodge, D. M. (1996). Avoidance by Daphnia magna of fish and macrophytes: chemical cues and predator-mediated use of macrophyte habitat. Limnology and Oceanography, 41, 794–798.

22.

Lauridsen, T., Pedersen, L. J., Jeppesen, E., & Sønergaard, M. (1996). The importance of macrophyte bed size for cladoceran composition and horizontal migration in a shallow lake. Journal of Plankton Research, 18, 2283–2294.

23.

Meerhoff, M., Iglesias, C., De Mello, F. T., Clemente, J. M., Jensen, E., Lauridsen, T. L., & Jeppesen, E. (2007). Effects of habitat complexity on community structure and predator avoidance behaviour of littoral zooplankton in temperate versus subtropical shallow lakes. Freshwater Biology, 52, 1009–1021.

24.

Minagawa, M., & Wada, E. (1984). Stepwise enrichment of δ 15N along food chains: further evidence and the relation between d15N and animal age. Geochem Cosmochim Acta, 48, 1135–1140.

25.

Mizuno, T., & Takahashi, E. (1991). An illustrated guide to freshwater zooplankton in japan. Tokyo: Tokai University Press.

26.

Moss, B., Kornijow, R., & Measey, G. (1998). The effect of nymphaeid (Nuphar lutea) density and predation by perch (Perca fluviatilis) on the zooplankton communities in a shallow lake. Freshwater Biology, 39, 689–697.

27.

Nurminen, L., Horppila, J., & Tallberg, P. (2001). Seasonal development of the cladoceran assemblage in a turbid lake: role of emergent macrophytes. Archiv für Hydrobiologie, 151, 127–1540.

28.

Nurminen, L., Horppila, J., & Pekcan-Hekim, Z. (2007). Effect of light and predator abundance on the habitat choice of plant‐attached zooplankton. Freshwater Biology, 52, 539–548.

29.

O’Hare, M. T., Baattrup-Pedersen, A., Nijboer, R., Szoszkiewicz, K., & Ferreira, T.(2006). Macrophyte communities of European streams with altered physical habitat. Hydrobiology, 566, 197–210.

30.

Phillips, D. L., & Gregg, J. W. (2001). Uncertainty in source partitioning using stable isotopes. Oecologia, 127, 171–179.

31.

Pinnegar, J. K., & Polunin, N. V. C. (1999). Differential fractionation of δ13C and δ15N among fish tissues: implications for the study of trophic interactions. Functional Ecology, 13, 225–231.

32.

Sakuma, M., Hanazato, T., Nakazato, R., & Haga, H. (2002). Methods for quantitative sampling of epiphytic microinvertebrates in lake vegetation. Limnology, 3, 115–119.

33.

Sakuma, M., Hanazato, T., Saji, A., & Nakazato, R. (2004). Migration from plant to plant: an important factor controlling densities of the epiphytic cladoceran Alona (Chydoridae, Anomopoda) on lake vegetation. Limnology, 5, 17–23.

34.

Schindler, D. E., & Scheuerell, M. D. (2002). Habitat coupling in lake ecosystems. Oikos, 98, 177–189.

35.

Smokorowski, K. E., & Pratt, T. C. (2007). Effect of a change in physical structure and cover on fish and fish habitat in freshwater ecosystems – a review and meta-analysis. Environmental Review, 15, 15–41.

36.

Son, M. W., & Jeon, Y. G. (2002). Physical geographical characteristics of natural wetlands on the downstream reach of Nakdong River. Journal of the Korean Association of Geographic Information Studies, 9, 66–76.

37.

Sooknah, R. D., & Wilkie, A. C. (2004). Nutrient removal by floating aquatic macrophytes cultured in anaerobically digested flushed dairy manure wastewater. Ecological Engineering, 22, 27–42.

38.

Stansfield, J. H., Perrow, M. R., Tench, L. D., Jowitt, A. J., & Taylor, A. A. (1997). Submerged macrophytes as refuges for grazing Cladocera against fish predation: observations on seasonal changes in relation to macrophyte cover and predation pressure. In Shallow Lakes’ 95 (pp. 229–240). Netherlands:Springer.

39.

Takai, N., Mishima, Y., Yorozu, A., & Hoshika, A. (2002). Carbon sources for demersal fish in the western Seto Inland Sea, Japan, examined by δ13C and δ15N analyses. Limnology and Oceanography, 47, 471–730.

40.

Thomaz, S. M., Dibble, E. D., Evangelista, L. R., Higuti, J., & Bini, L. M. (2008). Influence of aquatic macrophyte habitat complexity on invertebrate abundance and richness in tropical lagoons. Freshwater Biology, 53, 358–367.

41.

Thorp, J., & Covich, A. P. (2001). Ecology and classification of North Amiricaninvertebrates (2nd ed., p. 950). San Diego: Academic Press.

42.

Vermaat, J. E., Santamaria, L., & Roos, P. J. (2000). Water flow across and sediment trapping in submerged macrophyte beds of contrasting growth form. Archives of Hydrobiology, 148, 549–562.

43.

Vieira, L. C. G., Bini, L. M., Velho, L. F. M., & Mazão, G. R. (2007). Influence of spatial complexity on the density and diversity of periphytic rotifers, microcrustaceans and testate amoebae. Fundamental and Applied Limnology, 170, 77–85.

44.

Wetzel, R. G., & Likens, G. E. (2000). Limnological analyses. 429 pp, Springer-Vera lag New York. Berlin Heidelberg Spin springer.

45.

Zaret, T. M., & Suffern, J. S. (1976). Vertical migration in zooplankton as a predator avoidance mechanism. Limnology and Oceanography, 21, 804–813.

Journal of Ecology and Environment