바로가기메뉴

본문 바로가기 주메뉴 바로가기

logo

  • KOREAN
  • P-ISSN2287-8327
  • E-ISSN2288-1220
  • SCOPUS, KCI

Morphology and taxonomy of the Aphanizomenon spp. (Cyanophyceae) and related species in the Nakdong River, South Korea

Journal of Ecology and Environment / Journal of Ecology and Environment, (P)2287-8327; (E)2288-1220
2016, v.40 no.3, pp.1-9
https://doi.org/10.1186/s41610-016-0021-0



Abstract

Background: The purpose of this study is to describe the morphological characteristics of the Aphanizomenon spp. and related species from the natural samples collected in the Nakdong River of South Korea. Results: Morphological characteristics in the four species classified into the genera Aphanizomenon Morren ex Bornet et Flahault 1888 and Cuspidothrix Rajaniemi et al. 2005 were observed by light microscopy. The following four taxa were identified: Aphanizomenon flos-aquae Ralfs ex Bornet et Flahault, Aphanizomenon klebahnii Elenkin ex Pechar, Aphanizomenon skujae Komárková-Legnerová et Cronberg, and Cuspidothrix issatschenkoi (Usačev) Rajaniemi et al. Aph. flos-aquae and Aph. klebahnii always formed in fascicles; the others only occurred in solitary. Aph. flos-aquae was similar to Aph. klebahnii, whereas these species differed from each other by the size and shape of fascicles, which was macroscopic in Aph. flos-aquae and microscopic in the Aph. klebahnii. One of their characteristics was that trichomes are easily disintegrating during microscopic examination. C. issatschenkoi could be clearly distinguished from other species by hair-shaped terminal cell. Its terminal cell was almost hyaline and markedly pointed. Young populations of the species without heterocytes run a risk of a misidentification. Aph. skujae was characterized by akinete. Morphological variability of akinetes from natural samples collected in the Nakdong River was rather smaller than those reported by previous study. Conclusions: C. issatschenkoi are described for the first time in the Nakdong River. In addition, Aph. klebahnii and Aph. skujae are new to South Korea.

keywords
Aphanizomenon, Cuspidothrix, Cyanobacteria, Nakdong River, Nostocales

Reference

1.

Ballot, A., Fastner, J., Lentz, M., & Wiedner, C. (2010). First report of anatoxin-aproducing cyanobacterium Aphanizomenon issatschenkoi in northeastern Germany. Toxicon, 56, 964–971.

2.

Choi, C. M., Kim, J. H., Lee, J. S., Jung, G. B., Lee, J. T., & Moon, S. G. (2007). Phytoplankton flora and community structure in the lower Nakdong River. Korean Journal of Environmental Agriculture, 26(2), 159–170.

3.

Cirés, S., & Ballot, A. (2016). A review of the phylogeny, ecology and toxin production of bloom-forming Aphanizomenon spp. and related species within the Nostocales (cyanobacteria). Harmful Algae, 54, 21–43.

4.

Dias, E., Pereira, P., & Franca, S. (2002). Production of paralytic shellfish toxins by Aphanizomenon sp. LMECYA 31 (cyanobacteria). Journal of Phycology, 38(4), 705–712.

5.

Figueiredo, D. R., Ana, M. M., Gonçalves, B. B., Castro, F., Gonçalves, M., Pereira, J., & Correia, A. (2011). Differential inter- and intra-specific responses of Aphanizomenon strains to nutrient limitation and algal growth inhibition. Journalof Plankton Research, 33, 1606–1616.

6.

Gugger, M., Lyra, C., Henriksen, P., Coute, A., Humbert, J. F., & Sivonen, K. (2002). Phylogenetic comparison of the cyanobacterial genera Anabaena and Aphanzomenon. International Journal of Systematic and Evolutionary Microbiology, 52, 1867–1880.

7.

Guzmán-Guillén, R., Manzano, I. L., Moreno, I. M., Ortega, A. I. P., Moyano, R., Blanco, A., & Cameán, A. M. (2015). Cylindrospermopsin induces neurotoxicity in tilapia fish (Oreochromis niloticus) exposed to Aphanizomenon ovalisporum. Aquatic Toxicology, 161, 17–24.

8.

Hindák, F. (2000). Morphological variation of four planktic nostocalean cyanophytes—members of the genus Aphanizomenon or Anabaena? Hydrobiologia, 438, 107–116.

9.

Hindák, F., & Moustaka, M. T. (1988). Planktic cyanophytes of Lake Volvi, Greece. Archiv für Hydrobiologie/Algological Studies, 50–53, 497–528.

10.

Hirose, H. M., Akiyama, T., Imahori, H., Kasaki, H., Juamo, S., Kobayasi, H., Takahashi, E., Tsumura, T., Hirano, M., & Yamagishi, T. (1977). Illustrations of the Japanese freshwater algae (p. 933 pp). Tokyo: Uchidarokakugo Publishing Co., Ltd.

11.

John D.M., Whitton B.A. and Brook A.J. 2002. The freshwater algal flora of the British isles: An identification guide to freshwater and terrestrial algae. Cambridge University Press, 702 pp.

12.

Kastovsky, J., Hauer, T., Mares, J., Krautova, M., Besta, T., Komarek, J., Desortova, B., Hetesa, J., Hindakova, A., Houk, V., Janecek, E., Kopp, R., Marvan, P., Pumann, P. , Skacelova, O., & Zapomĕlová, E. (2010). A review of the alien and expansive species of freshwater cyanobacteria and algae in the Czech Republic. Biological Invasions, 12(10), 3599–3625.

13.

Komárek, J. (1958). Die taxonomische revision der planktishen blaualgen der Tschechoslowakei. In Algologische Studien, P. 10-206, Academia, Praha.

14.

Komárek, J. (2013). Cyanoprokaryota 3. Teil/3rd part: Heterocytous Genera. In B. Bübel, G. Gärtner, L. Krienitz, & M. Schagerl (Eds.), SüBwasserflora von Mutteleuropa, 19/3. Springer Spektrum (p. 1131 pp).

15.

Komárek, J., & Komárková, J. (2006). Diversity of Aphanizomenon-like Cyanobacteria. Czech Phycology, Olomouc, 6, 1–32.

16.

Komárek, J., & Kováčik, L. (1989). Trichome structure of four Aphanizomenon taxa (Cyanophyceae) from Czechoslovakia, with notes on the taxonomy and delimitation of the genus. Plant Systematics and Evolution, 164, 47–64.

17.

Komárková-Lengnerová, J., & Cronberg, G. (1992). New and recombined filamentous cyanophytes from lakes in South Scania, Sweden. Archiv für Hydrobiologie/Algological Studies, 67, 21–37.

18.

Kondrateva, N. V. (1968). Sin’o-zeleni vodorosti-Cyanophyta.-[Blue-green algae-Cyanophyta.]. In Viznač. Prosnov. Vodorost. Ukr. RSR 1(2): 1-524, Vidav. “Naukova Dumka”, Kiev.

19.

Lyra, C., Soumalainen, S., Gugger, M., Vezie, C., Sundman, P., Paulin, L., & Sivonen, K. (2001). Molecular characterization of planktic cyanobacteria of Anabaena, Aphanizomenon, Microcystis and Planktothrix genera. International Journal of Systematic and Evolutionary Microbiology, 51, 513–526.

20.

Ma, H., Wu, Y., Gan, N., Zheng, L., Li, T., & Song, L. (2015). Growth inhibitory effect of Microcystis on Aphanizomenon flos-aquae isolated from cyanobacteria bloom in Lake Dianchi. Harmful Algae, 42, 43–51.

21.

Marshall, H. G., Burchardt, L., & Lacouture, R. (2005). A review of phytoplankton composition within Chesapeake Bay and its tidal estuaries. Journal of Plankton Research, 27(11), 1083–1102.

22.

McDonald, K. E., & Lehman, J. T. (2013). Dynamics of Aphanizomenon and Microcystis (cyanobacteria) during experimental manipulation of an urban impoundment. Lake and Reservoir Management, 29(2), 272–276.

23.

Mehnert, G., Leunert, F., Cirés, S., Jöhnk, K. D., Rücker, J., Nixdorf, B., & Wiedner, C. (2010). Competitiveness of invasive and native cyanobacteria from temperate freshwaters under various light and temperature conditions. Journal of Plankton Research, 32(7), 1009–1021.

24.

Moustaka-Gouni, M., Kormas, K. A., Polykarpou, P., Gkelis, S., Bobori, D. C., &Vardaka, E. (2010). Polyphasic evaluation of Aphanizomenon issatschenkoi and Raphidiopsis mediterranea in a Mediterranean lake. Journal of Plankton Research, 32(6), 927–936.

25.

Paerl, H. W., & Huisman, J. (2009). Climate change: a catalyst for global expansion of harmful cyanobacterial blooms. Environmental Microbiology Reports, 1(1), 27–37.

26.

Park, H. K. (2004). Phytoplankton of Lake Paldang, Han River Environment Research Center (p. 131 pp).

27.

Park, H. K., Shin, R. Y., Lee, H. J., Lee, K. L., & Cheon, S. U. (2015). Spatio-temporal characteristics of cyanobacterial communities in the middle-downstream of Nakdong River and Lake Dukdong. Journal of Korean Society on Water Environment, 31(3), 286–294.

28.

Pharm, M. N., Onodera, H., Andrinolo, D., Franca, S., Araujo, F., Lagos, N., &Oshima, Y. (2011). A checklist of the algae of Singapore. Singpore: Raffles Museum of Biodiversity Research (pp. 1–100). Singapore: National University of Singapore.

29.

Preussel, K., Wessel, G., Fastner, J., & Chorus, I. (2009). Responde of cylindrospermopsin production and release in Aphanizomenon flos-aquae (Cyanobacteria) to varying light and temperature conditions. Harmful Algae, 8(5), 645–650.

30.

Rajaniemi, P., Hrouzek, P., Kaštovska, K., Willame, R., Rantala, A., Hoffmann, L., Komárek, J., & Sivonen, K. (2005). Phylogenetic and morphological evaluation of the genera Anabaena, Aphanizomenon, Trichormus and Nostoc (Nostocales, Cyanobacteria). International Journal of Systematic and Evolutionary Microbiology, 55, 11–26.

31.

Rajaniemi, P., Komárek, J., Willame, R., Hrouzek, P., Kaštovska, K., Hoffmann, L., &Sivonen, K. (2005). Taxonomic consequences from the combined molecular and phenotype evaluation of selected Anabaena and Aphanizomenon strains. Algologicals Studies, 117, 371–391.

32.

Ryu, H. S., Park, H. K., Lee, H. J., Shin, R. Y., & Cheon, S. U. (2016). Occurrence and succession pattern of cyanobacteria in the upper region of the Nakdong River: factors influencing Aphanizomenon bloom. Journal of Korean Society on Water Environment, 32(1), 52–59.

33.

Skuja, H. (1956). Taxonomische und biologische studien üder das phytoplankton schwedischer Binnengewässer. Nova acta Regiae Societatis Scientiarum Upsaliensis, Serie, 16(3), 1–104.

34.

Smith G.M. 1950. The fresh-water algae of the United States, Mcgraw-Hill Book Company, Inc., 719pp.

35.

Takano, K., & Hino, S. (2009). Phylogenic analysis of Aphanizomenon flos-aquae distributed in Japan on partial sequence of rbcLX. Japanese Journal of Limnology, 69(3), 247–253.

36.

Üveges, V., Tapolczai, K., Krienitz, L., & Padisák, J. (2012). Photosynthtic characteristics and physiological plasticity of an Aphanizomenon flos-aquae (Canobacteria, Nostocaceae) winter bloom in a deep oligo-mesotrophic lake(Lake Stechlin, Germanay). Hydrobiologia, 698, 263–272.

37.

Watanabe, M., (1985). Phytoplankton studies of Lake Kasumigaura. (2). On some rare or interesting algae. Bulletin National Science Museum Tokyo, Series, B11(4), 137–142.

38.

Wu, Z. X., Shi, J. Q., Lin, S., & Li, R. H. (2010). Unraveling molecular diversity and phylogeny of Aphanizomenon (Nostocales, Cyanobacteria) strains isolated from China. Journal of Phycology, 46(5), 1048–1058.

39.

Yamamoto, Y. (2009). Environmental factors that determine the occurrence and seasonal dynamics of Aphanizomenon flos-aquae. Journal of Limnology, 68(1), 122–132.

40.

Yamamoto, Y., & Nakahara, H. (2006). Importance of interspecific competition in the abundance of Aphanizomenon flos-aquae (Cyanophyceae). Limnology, 7, 163–170.

41.

Yu, J. J., Lee, H. J., Lee, K. L., Lyu, H. S., Hwang, J. H., Shin, R. Y., & Chen, S. U. (2014). Relations between distribution of the dominant phytoplankton species and water temperature in the Nakdong River, Korea. Korean Journal of Ecology and Environment, 47(4), 247–257.

42.

Zapomĕlová, E., Skácelová, O., Pumann, P., Kopp, R., & Janeček, E. (2012). Biogeographically interesting planktonic Nostocales (Cyanobacteria) in the Czech Republic and their polyphasic evaluation resulting in taxonomic revisions of Anabaena bergii Ostenfeld 1908 (Chrysosporum gen. nov.) and A. tenericaulis Nygaard 1949 (Dolochospermum tenericaule comb. nova). Hydrobiologia, 698(1), 353–365.

43.

Zhang, D. L., Liu, S. Y., Zhang, J., Hu, C. X., Li, D. H., & Liu, Y. D. (2015). Antioxidative responses in Zebrafish Liver exposed to sublethal doses Aphanizomenon flosaquae DC-1 aphatoxins. Ecotoxicology and Environmental Safety, 113, 425–432.

Journal of Ecology and Environment