바로가기메뉴

본문 바로가기 주메뉴 바로가기

logo

Relationship between halophyte distribution and soil environmental factors in the west coast of South Korea

Journal of Ecology and Environment / Journal of Ecology and Environment, (P)2287-8327; (E)2288-1220
2018, v.42 no.1, pp.12-19
https://doi.org/10.1186/s41610-017-0062-z



  • Downloaded
  • Viewed

Abstract

Background: The objective of this study was to determine the relationship between soil environmental factors and halophyte distribution in the west coast of South Korea. Soils of our study sites were categorized into two groups: salt marsh and estuary marsh. Results: Salinity was higher in the salt marsh group than that in the estuary marsh group. However, total nitrogen, silt, and clay contents were higher in the estuary marsh group than those in the salt marsh group. Although altitude had a wider range in the salt marsh group, the mean altitude was higher in the estuary marsh group than that in the salt marsh group. Annual halophytes of seed propagation species were distributed parallel to the coast line on salt marsh. Higher coverage of vegetation was found in the area closer to the coast line. Plant density was higher near dead parental plants in estuary marsh, showing less difference in area that was more distant from the coast line. Conclusions: Results of canonical correspondence analysis (CCA) for vegetation distribution and sediment environmental factors and germination analysis in the coast line showed significant relationship with halophyte distribution. Therefore, they can be used as an indicator of coastal plant movement due to sea level rise.

keywords
Estuary marsh, Salt marsh, Halophyte distribution, Soil factor, CCA, Altitude

Reference

1.

Alexander, C. R., Nittrouer, C. A., Demaster, D. J., Park, Y. A., & Park, S. C. (1991). Macrotidal mudflats of the southwestern Korean coast: a model for interpretation of intertidal deposits. J Sedim Petrol, 61, 805-824.

2.

Alhdad, G. M., Zorb, C., Al-Azzawi, M. J., & Flowers, T. J. (2015). Is the reduced growth of the halophyte Suaeda maritima under hypoxia due to toxicity of iron or manganese? Environmental and Experimental Botany, 116, 61-70.

3.

APHA (1989). Standard Methods for the Examination of Water and Wastewater. APHA. Washington DC. pp. 1482.

4.

Bird, E. C. F. (1984). Coasts: An introduction to coastal geomorphology (3rd ed.p. 372). Canberra: Australian Nationnal University Press.

5.

Braun-Blanquet, J. (1964). Pflanzensoziologie. Grundzuge der Vegetationskude (p. 865). Wien, New York: Springer-Verlag.

6.

Cahoon, D. R., Lynch, J. C., & Knaus, R. M. (1996). Improved cryogenic coring device for sampling wetland soils. Journal of Sedimentary Research, 66, 1025-1027.

7.

Cho, J.-S., Lee, J.-S., & Kim, J.-W. (2017). Distribution of Phragmites australis communities with different habitat salinity. J Coastal Res, 33, 1210-1216.

8.

Choi, J. Y. (1993). Seasonal variations of suspended matter in the Keum estuary and its adjacent coastal area. J Oceanol Soc Korea, 28, 272-280.

9.

Chung, G. S., & Park, Y. A. (1978). Sedimentological properties of the recent intertidal flat environment, southern Namyang bay, west coast of Korea. Ocean Sci J, 13, 9-18.

10.

Costa, C. S. B., Marangoni, J. C., & Azevedo, A. M. G. (2003). Plant zonation in irregularly flooded salt marshes: relative importance of stress tolerance and biological interactions. Journal of Ecology, 91, 951-965.

11.

Dalling, J. W., Swaine, M. D., & Garwood, N. C. (1998). Dipersal patterns and seed bank dynamic of pioneer trees in moist tropical forest. Ecology, 79, 564-578.

12.

Davidson-Amott, R. G. D., van Proosdij, D., Ollerhead, J., & Schostavk, L. (2002). Hydrodynamics and sedimentation in salt marshes: examples from a macrotidal marsh, Bay of Fundy. Geomorphology, 48, 209-231.

13.

Folk, R. L., & Ward, W. C. (1954). Brazos river bar: a study in the significance of grain size parameters. J Sedim Petrol, 1954(27), 3-26.

14.

Glenn, E. P., Nagler, P. L., Brusca, R. C., & Hinojosa-Huerta, O. (2006). Coastal wetlands of the northern Gulf of California: inventory and conservation status. Aquati Conserv, 16, 5-28.

15.

Gul, B., Ansan, R., Flowers, T. J., & Khan, M. A. (2013). Germination strategies of halophyte seeds under salinity. Environmental and Experimental Botany, 92, 4-18.

16.

Harper, J. L. (1977). Population biology of plants. London: Academic Press.

17.

Hong, JS (2000) Biodiversity of macrofauna on macrotidal flats, Inchon, Korea. Program and Proceedings of International Symposium. The Korea Society of Phycology, Seoul. p. 45-58.

18.

Hubbel, S. P. (1980). Seed production and the coexistance of tree species in tropical forests. Oikos, 35, 214-229.

19.

Ihm, B. S., & Lee, J. S. (1998). Soil factors affecting the plant communities of wetland on southwestern coast of Korea. Korean J Ecol, 21, 321-328.

20.

Ihm, B.-S., Lee, J.-S., Kim, J.-W., & Kim, J.-H. (2006). Effect of soil factors on vegetation values of salt marsh plant communities. J Ecol Field Biol, 29, 361-364.

21.

Ihm, B.-S., Lee, J.-S., Kim, J.-W., & Kim, J.-H. (2007). Coastal plant and soil relationships in the southwestern coast of South Korea. J Plant Biol, 50, 331-335.

22.

Ingram, R. L. (1971). Sieve analysis. In R. E. Carver (Ed.), Procedures in sedimentary petrology (pp. 49-67). New York: Willey-Inter Science.

23.

Ivajnsic, D., Sajna, N., & Kaligaric, M. (2016). Primary succession on re-created coastal wetland leads to successful restoration of coastal halophyte vegetation. Landscape Urban Plan, 150, 79-86.

24.

Kim, C. H., Cho, D. S., Lee, K. B., & Choi, S. Y. (2006). Population formation strategies of halophytes in Mankyeong River Estuary. Korean J Environ Ecol, 20(3), 299-310.

25.

Kim, S. Y., Jung, K. K., Kim, B. M., Lee, Y. G., Choi, Y. S., & Kim, S. (2008). Geochemical characteristics in the costal wetland and intertidal zone of Suncheon Bay. Journal of Wetlands Research, 10, 81-96.

26.

Kirwan, M. L., & Guntenspergen, G. R. (2012). Feedbacks between inundation, root production, and shoot growth in a rapidly submerging brackish marsh. Journal of Ecology, 100, 764-770.

27.

Konisky, R. A., Burdick, D. M., Dionne, M., & Neckles, H. A. (2006). A regional assessment of salt marsh restoration and monitoring in the Gulf of Maine. Restoration Ecology, 14, 516-525.

28.

Korea Environment Institute (2006). Study on the effective mitigation measures of coastal erosion due to coastal developments. Korea Environment Institute. Sejong. pp. 630.

29.

Lee, D. G., & Yoon, S. Y. (1999). A study on the economic evaluation of conservation value of coast wetland-a case study of Kang-Hwa island. The Industrial Science Researches, 7, 141-154.

30.

Lee, J.-S., Ihm, B.-S., Cho, D. S., Son, D.-Y., & Kim, J.-W. (2007). Soil particle sizes and plant communities on coastal dunes. J Plant Biol, 50, 475-479.

31.

Lee, J. S., Ihm, B. S., Myeong, H. H., Park, J. W., & Kim, H. S. (2009). Soil environment analysis and habitat of halophyte for restoration in the salt marshes of southern and western coasts of Korea. Korean J Plant Res, 22(1), 102-110.

32.

Lee, J. S., Kim, J.-W., Lee, S. H., Myeong, H.-H., Lee, J.-Y., & Cho, J. S. (2016). Zonation and soil factors of salt marsh halophyte communities. J Ecol Env, 40(1), 1-4.

33.

Lee SH (2011). Distribution of halophyte communities along altitudinal gradient and the growth induction of the vegetation in salt marshes. Ph.D. Thesis, Mokpo National University, Mokpo.

34.

Lee, S. H., Lee, J. S., Ihm, B. S., & Chae, J. H. (2014a). Halophytes biological introduction using small fences and water channels at the estuary marsh of Gojan. Journal of Korean Environmental Dredging Society, 4(1), 12-20.

35.

Lee, Y.-K., Park, W., Choi, J.-K., Ryu, J.-H., & Won, J.-S. (2014b). Halophyte die-off in response to anthropogenic impacts on tidal flats. Estuar Coast Shelf S, 151, 347-354.

36.

Liu, S. W., Zhao, C., Zhang, Y., Hu, Z., Wang, C., Zong, Y., Zhang, L., & Zou, J. (2015). Annual net greenhouse gas balance in a halophyte (Helianthus tuberosus) bioenergy cropping system under various soil practices in Southeast China. GCB Bioenergy, 7, 690-703.

37.

Maeng, J. H., Cho, K. W., Kim, H. S., Park, H. N., Hong, J. S., Yoo, J. W., & Lee, C. G. (2007). Improving environmental assessment in tidal flat reclamation (p. 154). Sejong: Korea Environment Institute.

38.

Min, B. M. (2000). Distribution of Acer palmatum seedlings under the crown of the maternal tree. J Plant Biol, 43, 33-40.

39.

Min, B. M. (2005). Seed distribution and burial properties of Suaeda japonica in tidal-flat. Korean Journal of Ecology, 28(3), 141-147.

40.

Nyman, J. A., Walters, R. J., DeLaune, R. D., & Patrick Jr., W. H. (2006). Marsh vertical accretion via vegetative growth. Estuar Coast Shelf S, 69, 370-380.

41.

Oh, J. K., & Bang, K. Y. (2003). Sedimentologic linkage of depositional environments of Han River and Kyunggi Bay, Korea. Ocean Sci J, 8(3), 225-236.

42.

Okubo, A., & Levin, S. A. (1989). A theoretical framework for data analysis of wind dispersal of seeds and pollen. Ecology, 70, 329-338.

43.

Park, E. J. (2000). The spatial characteristics of vertical accretion rate in a coastal wetland-in case of Sunchon bay estuarine marsh, south coast of Korea. Journal of the Korean Association of Regional Geographers, 6(3), 153-168.

44.

Park, M. J. (2008). Tidal characteristics change in the Asan Bay due to the Hwaong (Namyang Bay) Tidal Barrier. Ocean Sci J, 13(4), 320-324.

45.

Park, T. Y. (1999). A study on the management planning for the conservation and environmentally friendly use of Korean coastal wetlands. Journal of the Korea Society of Environmental Restoration Technology, 2(3), 64-73.

46.

Rogel, J. A., Ariza, F. A., & Silla, R. O. (2000). Soil salinity and moisture gradients and plant zonation in Mediterranean salt marshes of southeast Spain. Wetlands, 20, 357-372.

47.

Sin, M. H., & Kim, C. H. (2010). Traits of control by sluice gates and halophyte community formation in Saemangeum. Korean J Environ Ecol, 24(2), 186-193.

48.

Ter Braak, CJF, & Smilauer, P (2002). CANOCO reference manual and CanoDraw for Windows user's guide: software for canonical community ordination (version 4.5). Microcomputer power, Itaca, NY, USA. http://www.canoco5.com.

49.

Viles, H., & Spencer, T. (1995). Coastal problems: Geomophology, ecology and society at the coast (p. 352). London: Edeward Arnold.

50.

Wells, J. T., Adams, Y. A., & Frankenberg, E. W. (1990). Morphology, sedimentology and tidal channel processes on a high-tide-rage mudflat, west coast of South Korea. Marine Geology, 95, 111-130.

51.

Willson, M. F. (1992). Dispersal mode, seed shadows and colonization patterns. Vegetatio, 107(108), 261-280.

52.

Xie, T, Cui, B, Bai, J, Li, S, & Zhang, S (2017) Rethinking the role of edaphic condition in halophyte vegetation degradation on salt marshes due to coastal defense structure. Physics and Chemistry of the Earth. doi:https://doi.org/10.1016/j.pce.2016.12.001.

53.

Yokoishi, T., & Tanimoto, S. J. (1994). Seed germination of the halophyte Suaeda japonica under salt stress. Plant Res, 107, 385-388.

Journal of Ecology and Environment