바로가기메뉴

본문 바로가기 주메뉴 바로가기

ACOMS+ 및 학술지 리포지터리 설명회

  • 한국과학기술정보연구원(KISTI) 서울분원 대회의실(별관 3층)
  • 2024년 07월 03일(수) 13:30
 

logo

  • ENGLISH
  • P-ISSN2287-8327
  • E-ISSN2288-1220
  • SCOPUS, KCI

Modeling potential habitats for Pergularia tomentosa using maximum entropy model and effect of environmental variables on its quantitative characteristics in arid rangelands, southeastern Iran

Journal of Ecology and Environment / Journal of Ecology and Environment, (P)2287-8327; (E)2288-1220
2018, v.42 no.4, pp.227-239
https://doi.org/10.1186/s41610-018-0083-2
Seyed Hamzeh Hosseini (University of Jiroft)
Hossein Azarnivand (University of Tehran)
Mahdi Ayyari (Tarbiat Modares University (TMU))
Mohammad Ali Zare Chahooki (University of Tehran)
Reza Erfanzadeh (Tarbiat Modares University (TMU))
Sonia Piacente (University of Salerno)
Reza Kheirandish (Shahid Bahonar University of Kerman)

Abstract

Background: Predicting the potential habitat of plants in arid regions, especially for medicinal ones, is very important. Although Pergularia tomentosa is a key species for medicinal purposes, it appears in very low density in the arid rangelands of Iran, needing an urgent ecological attention. In this study, we modeled and predicted the potential habitat of P. tomentosa using maximum entropy, and the effects of environmental factors (geology, geomorphology, altitude, and soil properties) on some characteristics of the species were determined. Results: The results showed that P. tomentosa was absent in igneous formation while it appeared in conglomerate formation. In addition, among geomorphological units, the best quantitative characteristics of P. tomentosa was belonged to the conglomerate formation-small hill area (plant aerial parts = 57.63 and root length = 30.68 cm) with the highest electrical conductivity, silt, and CaCO3 content. Conversely, the species was not found in the mountainous area with igneous formation. Moreover, plant density, length of roots, and aerial parts of the species were negatively correlated with soil sand, while positive correlation was observed with CaCO3, EC, potassium, and silt content. The maximum entropy was found to be a reliable method (ROC = 0.91) for predicting suitable habitats for P. tomentosa. Conclusion: These results suggest that in evaluating the plant’s habitat suitability in arid regions, contrary to the importance of the topography, some environmental variables such as geomorphology and geology can play the main role in rangeland plants’ habitat suitability.

keywords
Arid rangelands, Environmental variables, Quantitative plant characteristics, Habitat suitability, Maximum entropy, Pergularia tomentosa

참고문헌

1.

Abdollahi J, Naderi H, Mirjalili MR, Tabatabaeezadeh MS. Effects of some environmental factors on growth characteristics of Stipa barbata species in steppe rangelands of Nodoushan-Yazd. J Rang and Dest Res. 2013;20(1):130–44.

2.

Al-Jabri SAH. Chemical and bio-analytical studies on Pergularia tomentosa and species from the Mentha genus, Ph.D. thesis, University of Leicester; 2013. p. 259.

3.

Al-Rowaily SL, El-Bana MI, Al-Bakre BDA, Assaeed CAM, Basharat AAK. Effects of open grazing and livestock exclusion on floristic composition and diversity in natural ecosystem of Western Saudi Arabia. Saudi J Biol Sci. 2015;22:430–7.

4.

Al-Said M, El-Olemy MM, Elhag HM. Biotechnological production of biologically active metabolites by plant cell culture techniques. Saudi Arabia: KACsST (King Abdulaziz City for Science and Technology); 2002. p. 218–56.

5.

Arafa HI, Alberto P, Balestrieri ML, Mahalel UA, Springuel IV, Oleszek W, Pizza C, Piacente S. Cardenolide glycosides from Pergularia tomentosa and their proapoptotic activity in Kaposi’s sarcoma cells. J Nat Prod. 2006;69:1319–22.

6.

Ashrafzadeh M, Erfanzadeh R, Hoseini Kahnouj SH. Effects of soil chemical properties on forage quality in dry rangelands in the south of Fars province. J Ran and Des Res. 2015;22(2):383–91 (In Persian).

7.

Babaamer Z, Sekhari L, Al-Jaber H, Al-Qudah M. Extraction and identification of triterpenoids from Pergularia tomentosa L. ANN Sci Technol. 2013;5:1–4.

8.

Babaamer ZY, Sakhri L, Al-Jaber HI, Al-Qudah MA, Abu Zarga MH. Two new taraxasterol-type triterpenes from Pergularia tomentosa growing wild in Algeria. J Asian Nat Prod Res. 2012;14:1137–43.

9.

Bekheet SH, Abdel-Motaal FF, Mahalel UA. Antifungal effects of Ficus sycomorus and Pergularia tomentosa aqueous extracts on some organs in Bufo regularis treated with Aspergillus niger. TISSUE CELL. 2011;43:398–404.

10.

Bellakhdar J. La Pharmacopee Marocaine Traditionnelle. Médecine arabe ancienne et savoirs populaires. Paris: Ibis Press; 1998.

11.

Black CA. Method of soil analysis. American society of agronomy. 1979;2:771.

12.

Buehler EC, Ungar LH. Maximum entropy methods for biological sequence modeling. BIOKDD; 2001. p. 60–4.

13.

Byeon DH, Jung S, Lee WH. Review of CLIMEX and MaxEnt for studying species distribution in South Korea. J Asia-Paci Biodi. 2018;11:325–33.

14.

Chaudhary SA, Le Houérou HN. The rangelands of the Arabian Peninsula. Secheresse. 2006;17(1):179–94.

15.

Deleo JM. Receiver operating characteristic laboratory (ROCLAB): software for developing decision strategies that account for uncertainty. College Park:Proceedings of the 2nd International Symposium on Uncertainty Modeling and Analysis; 1993. p. 25–8.

16.

Elith J, Graham CH, Anderson RP, Dudk M, Ferrier S, Guisan A, Hijmans RJ, Huettmann F, Leathwick JR, Lehmann A, Li J, Lohmann LG, Loiselle BA, Manion G, Moritz C, Nakamura M, Nakazawa Y, Overton JM, Peterson AT, Phillips SJ, Richardson K, Scachetti-Pereira R, Schapire RE, Soberón J, Williams S, Wisz MS, Zimmermann NE. Novel methods improve prediction of species’distributions from occurrence data. Ecography. 2006;29:129–51.

17.

Erfanzadeh R, Hosseini Kahnuj SH. Soil seed bank characteristics in relation to distance from watering-points in arid ecosystems (case study: Kahnuj, Kerman Province). ECOPERSIA. 2015;3:975–86.

18.

Erfanzadeh R, Hosseini Kahnuj SH, Pétillon J. Crude protein content does not determine the preference value of plant species for the Raini goat (Capra aegagrus hircus L.) in dry rangelands. DESERT. 2014;19:35–43.

19.

Fielding AH, Bell JF. A review of methods for the assessment of prediction errors in conservation presence/absence methods. Environ Conserv. 1997;24:38–49.

20.

Gallacher DJ, Hill JP. Effects of camel vs oryx and gazelle grazing on the plant ecology of the Dubai desert conservation reserve. In: Mohamed AMO, editor. Pages reclaiming the desert: towards a sustainable environment in arid lands. Proceedings of the Third Joint UAE-Japan Symposium on Sustainable GCC Environment and Water Resources (EWR2006). Abu Dhabi: Taylor & Francis; 2006. p. 85–95.

21.

Gogol-Prokurat M. Predicting habitat suitability for rare plants at local spatial scales using a species distribution model. Ecol Appl. 2011;21:33–47.

22.

Goyder DJ. A revision of the genus Pergularia L. (Apocynaceae: Asclepiadoideae). Kew Bull. 2006;61:245–56.

23.

Green PWC, Veitch NC, Stevenson PC, Simmonds MSJ. Cardenolides from Gomphocarpus sinaicus and Pergularia tomentosa (Apocynaceae:Asclepiadoideae) deter the feeding of Spodoptera littoralis. Arthropod Plant Interact. 2011;5:219–25.

24.

Guisan A, Zimmermann NE, Elith J, Graham CH, Phillips S, Peterson AT. What matters for predicting the occurrences of trees: techniques, data, or species’characteristics? Ecol Monogr. 2007;77:615–30.

25.

Hammiche H, Maiza K. Traditional medicine in Central Sahara: pharmacopoeia of Tassili N’ajjer. J Ethnopharmacol. 2006;105:358–67.

26.

Heneidak S, Grayer RJ, Kite GC, Simmonds MSJ. Flavonoid glycosides from Egyptian species of the tribe Asclepiadeae (Apocynaceae, subfamily Asclepiadoideae). Biochem Syst Ecol. 2006;34:575–84.

27.

Hernández PA, Graham CH, Master LL, Albert DL. The effect of sample size and species characteristics on performance of different species distribution modeling methods. Ecography (Cop). 2006;29:773–85.

28.

Higgins MA, Ruokolainen K, Tuomisto H, Llerena N, Cardenas G, Phillips OL, Vásquez R, Räsänen M. Geological control of floristic composition in Amazonian forests. J Biol. 2011;38:2136–49.

29.

Hosseini FS. Canopy effect of Pteropyrum aucheri on species richness and density of soil seed bank of P. tomentosa. Master thesis, Tarbiat Modares University (TMU); 2016. p. 78.

30.

Hosseini Kahnouj SH, Ayyari M, Azarnivand H, Piacente S, Zare Chahouki MA. Pergularia tomentosa, from traditional uses to ecology and phytochemistry. J Med Plants. 2017;16(63):108–18.

31.

Hosseini SZ, Kappas M, Zare Chahouki MA, Gerold G, Erasmi S, Emam Rafiei A. Modelling potential habitats for Artemisia sieberi and Artemisia aucheri in Poshtkouh area, central Iran using the maximum entropy model and geostatistics. Ecol Inform. 2013;18:61–8.

32.

Hussein HI, Al-Rajhy D, El-Shahawi FI, Hashem SM. Molluscicidal activity of Pergularia tomentosa (L), methomyl and methiocarb against land snails. Int J Pest Manage. 1999;45:211–3.

33.

Jackson DA. Stopping rule in principal component analysis - a comparison of heuristic and statistical approaches. J Ecol. 1993;74(8):2204.

34.

Jackson ML. Soil chemical analysis. New Delhi: Prentice-Hall of India; 1967. p. 489.

35.

Jung JM, Lee WH, Jung S. Insect distribution in response to climate change based on a model: review of function and use of CLIMEX. Entomological Research. 2016;46:223–35.

36.

Kumar S, Neven LG, Zhu H, et al. Assessing the global risk of establishment of Cydia pomonella (Lepidoptera: Tortricidae) using CLIMEX and MaxEnt niche models. J Econ Entomol. 2015;108:1708–19.

37.

Kumar S, Spaulding SA, Stohlgren TJ, Hermann KL, Schmidt TS, Bahls LL. Potential habitat distribution for the freshwater diatom Didymosphenia geminata in the continental US. J JEAE. 2009;7(8):415–20.

38.

Lahiji AA, Jafari M, Zare Chahooki MA, Dadaopokshi MA. The effects of different agricultural uses of drylands on soil fertility factors in Hamadan Province (Chopok-loo area, Bahar City): a case study. Int j agric crop sci. 2012;4-10:586–90.

39.

Maiti SK. Handbook of methods in environmental studies. Air, noise, soil and overburden analysis,Vol. 2. Jaipur: ABD Publishers; 2003.

40.

Marmion M, Parviainen M, Luoto M, Heikkinen RK, Thuiller W. Evaluation of consensus methods in predictive species distribution modelling. Divers. Distributions. 2009;15:59–69.

41.

Negga HE. Predictive modelling of amphibian distribution using ecological survey data: a case study of Central Portugal. Enschede: Master thesis International Institute for Geo-information Science and Earth Observation;2007.

42.

Panchal NS, Pandey AN. Study on soil properties and their influence on vegetation in Western Region of Gujarat State in India. Beijing: 12th ISCO conference; 2002. p. 610–5.

43.

Phillips SJ, Anderson RP, Schapire RE. Maximum entropy modeling of species geographic distributions. Ecol Model. 2006;190:231–59.

44.

Piacente S, Masullo M, De Nève N, Dewelle J, Hamed A, Kiss R, Mijatovic T. Cardenolides from Pergularia tomentosa display cytotoxic activity resulting from their potent inhibition of Na+/K+-ATPase. J Nat Prod. 2009;72:1087–91.

45.

Pilania PK, Panchal NS. Soil and plant relation at Little Rann of Kutch of Gujarat in western India. Int J Adv Res. 2014;7:1–10.

46.

Pilania PK, Panchal NS. Influence of soil properties on plant density and species richness of saline desert. An Biol. 2016;38:81–90.

47.

Shabala S, Shabala L, Volkenburgh EV. Effect of calcium on root development and root ion fluxes in salinised barley seedlings. Funct Plant Biol. 2003;30:507–14.

48.

Shinkafi SA. Antidermatophytic activities of column chromatographic fractions and toxicity studies of Pergularia tomentosa L. and Mitracarpus scaber Zucc. Used in the treatment of dermatophytoses. Adv. Med. Plant Res. 2014;2:7–15.

49.

Soltanipur MA. Medicinal plants of Geno. Iranian Journal of Pajouhesh &Sazandegi. 2005;69:27–37 (In Persian).

50.

Vogiatzakis IN, Griffiths GH,Mannion AM. Environmental factors and vegetation composition, Lefka Ori Massif, Crete, S Aegean. Glob Ecol Biogeogr. 2003;12:131–46.

51.

Warren DL, Seifert SN. Ecological niche modeling in Maxent: the importance of model complexity and the performance of model selection criteria. Ecol Appl. 2011;21:335–42.

52.

Yakubu R, Jibril FM, Lukman A, Sheikh F. Trends for antioxidant power of phytochemicals from Pergularia tomentosa L. (Asclepiadaceae) whole plant. SAJP. 2015;4:74–80.

53.

Youssef AM, Al-Fredan MA. Community composition of major vegetations in the coastal area of Al-Uqair, Saudi Arabia in response to ecological variations. Pak J Biol Sci. 2008;8(4):713–21.

54.

Zegeye H, Teketay D, Kelbessa E. Diversity, regeneration status and socioeconomic importance of the vegetation in the island of Lake Ziway, southcentral Ethiopia. Flora. 2006;201:483–98.

Journal of Ecology and Environment