바로가기메뉴

본문 바로가기 주메뉴 바로가기

ACOMS+ 및 학술지 리포지터리 설명회

  • 한국과학기술정보연구원(KISTI) 서울분원 대회의실(별관 3층)
  • 2024년 07월 03일(수) 13:30
 

logo

  • ENGLISH
  • P-ISSN2287-8327
  • E-ISSN2288-1220
  • SCOPUS, KCI

Quantifying how urban landscape heterogeneity affects land surface temperature at multiple scales

Journal of Ecology and Environment / Journal of Ecology and Environment, (P)2287-8327; (E)2288-1220
2021, v.45 no.4, pp.190-202
https://doi.org/10.1186/s41610-021-00203-z
Rahimi Ehsan (Shahid Beheshti University)
Barghjelveh Shahindokht (Shahid Beheshti University)
Dong Pinliang (University of North Texas)

Abstract

Background: Landscape metrics have been widely applied to quantifying the relationship between land surface temperature and urban spatial patterns and have received acceptable verification from landscape ecologists but some studies have shown their inaccurate results. The objective of the study is to compare landscape metrics and texture-based measures as alternative indices in measuring urban heterogeneity effects on LST at multiple scales. Results: The statistical results showed that the correlation between urban landscape heterogeneity and LST increased as the spatial extent (scale) of under-study landscapes increased. Overall, landscape metrics showed that the less fragmented, the more complex, larger, and the higher number of patches, the lower LST. The most significant relationship was seen between edge density (ED) and LST (r = − 0.47) at the sub-region scale. Texture measures showed a stronger relationship (R 2 = 34.84% on average) with LST than landscape metrics (R2 = 15.33% on average) at all spatial scales, meaning that these measures had a greater ability to describe landscape heterogeneity than the landscape metrics. Conclusion: This study suggests alternative measures for overcoming landscape metrics shortcomings in estimating the effects of landscape heterogeneity on LST variations and gives land managers and urban planners new insights into urban design.

keywords
Land surface temperature, Landscape heterogeneity, Texture-based measures, Landscape metrics

Journal of Ecology and Environment