바로가기메뉴

본문 바로가기 주메뉴 바로가기

ACOMS+ 및 학술지 리포지터리 설명회

  • 한국과학기술정보연구원(KISTI) 서울분원 대회의실(별관 3층)
  • 2024년 07월 03일(수) 13:30
 

logo

  • P-ISSN1598-1487
  • E-ISSN2671-7247

인공지능을 활용한 지능형 기록관리 방안

Intelligent Records and Archives Management That Applies Artificial Intelligence

한국기록관리학회지 / Journal of Korean Society of Archives and Records Management, (P)1598-1487; (E)2671-7247
2017, v.17 no.4, pp.225-250
https://doi.org/10.14404/JKSARM.2017.17.4.225
김인택 (명지대학교)
안대진 (명지대학교 기록정보과학전문대학원, (주)아카이브랩 대표)
이해영 (명지대학교)

초록

4차 산업혁명에 대한 관심이 고조되고 있다. 인공지능은 그 기반기술이며 핵심적인 기술이다. 기록관리 분야에서도 해외를 중심으로 효율적인 업무처리를 위해 인공지능이 도입되고 있는 추세이다. 본 연구에서는 먼저 인공지능의 개념을 제시 한 후, 인공지능이 태동되게 된 배경을 알아보았다, 또 인공지능의 다양한 분야에 대해 알아보고, 획기적인 사례를 중심으로 발전 과정을 살펴보았다. 다양한 영역에서 인공지능의 활용사례를 텍스트 분석, 영상인식 관련, 음성인식 관련하여 살펴보았다. 이 각각의 영역에서 기록정보서비스 측면에서의 적용 사례를 확인해보고, 지능형 기록정보서비스 모듈 구성 및 인터페이스 등 앞으로 기록관리 영역에서 가능한 활용 방안을 알아보고 제시하였다.

keywords
records and archives management, artificial intelligence, AI, text analysis, image recognition, speech recognition, intelligent records and archives information services, 기록관리, 인공지능, 텍스트 분석, 영상인식, 음성인식, 기록정보서비스

Abstract

The Fourth Industrial Revolution has become a focus of attention. Artificial intelligence (AI) is the key technology that will lead us to the industrial revolution. AI is also used to facilitate efficient workflow in records and archives management area, particularly abroad. In this study, we introduced the concept of AI and examined the background on how it rose. Then we reviewed the various applications of AI with prominent examples. We have also examined how AI is used in various areas such as text analysis, and image and speech recognition. In each of these areas, we have reviewed the application of AI from the viewpoint of records and archives management and suggested further utilization of the methods, including module and interface for intelligent records and archives information services.

keywords
records and archives management, artificial intelligence, AI, text analysis, image recognition, speech recognition, intelligent records and archives information services, 기록관리, 인공지능, 텍스트 분석, 영상인식, 음성인식, 기록정보서비스

참고문헌

1.

국가기록원. (2017). 2017 국가기록원 주요업무 참고자료집:국가기록원.

2.

박전규. (2017). 딥러닝 기법 적용 다국어 음성인식기술 (-). 2017 기록관리 R&D 공동학술 세미나. 국가기록원.

3.

박춘원. (2017). 4차 산업혁명 시대 기업 동영상 기록 관리와 동적 메타데이터 (-). 2017 한국기록관리학회 춘계학술대회 및 한국기록과 정보․문화학회, 대한기록정보경영포럼 공동 주최 학술회의. 한국외국어대학교.

4.

세미콘 네트웍스. (2017). 사업분야. http://www.sns.co.kr/scripts/rid_division.asp?lKey=02&mKey=02.

5.

송철의. (2016). [한국어와 인공지능] 송철의 국립국어원장 “한국어 AI 시대의 기초는 말뭉치… 제2의세종계획 추진해야. http://biz.chosun.com/site/data/html_dir/2016/10/09/2016100900328.html.

6.

스토리안트. (2017). 지능형 기록관리 업무지원 시스템. http://www.storyant.com/?page_id=6092.

7.

신은희. (2017). 지능형 콘텐츠 기술 발전 전략 연구. 한국콘텐츠진흥원.

8.

안대진. (2017). 지능형 기록정보서비스 방안 (52-57). 제9회 전국기록인대회 발표자료집.

9.

오대석. (2017). 스스로 바둑 깨우친 ‘알파고 제로'… AI ‘새 이정표'. http://www.etnews.com/20171019000101.

10.

이웅. (2017). 인공지능용 한국어 말뭉치 155억어절 구축… 5년간 175억 지원. http://www.yonhapnews.co.kr/bulletin/2017/10/08/0200000000AKR20171008048600005.HTML.

11.

지형철. (2017). 말하고 듣는 AI시대… 뒤처진 한국어. http://news.kbs.co.kr/news/view.do?ncd=3432955.

12.

추형석. (2016). AlphaGo의 인공지능 알고리즘 분석. 소프트웨어정책연구소.

13.

Ai. (2017). Text APIs. https://ai-applied.nl/text-apis/.

14.

(2017). Service. ABRIL의 서비스를 소개합니다. https://www.aibril.com/web/api/getApiIndex.do.

15.

Amazon. (2017). Amazon rekognition. https://aws.amazon.com/ko/rekognition/.

16.

Amazon AI. (2017). AWS 기반 인공 지능. https://aws.amazon.com/ko/amazon-ai/.

17.

Bahde, A.. (2017). Conceptual data visualization in archival finding aids: preliminary user responses. portal: Libraries and the Academy, 17(3), 485-506.

18.

BBC. (2014). Turing machine. http://www.bbc.com/news/technology-27762088.

19.

Daines III, J. G.. (2011). Re-imagining archival display: Creating user-friendly finding aids. Journal of Archival Organization, 9(1), 4-31.

20.

Dartmouth. (2006). Dartmouth artificial intelligence conference: The next 50 years. https://www.dartmouth.edu/~ai50/homepage.html.

21.

(2017). DBPedia Contribute. http://wiki.dbpedia.org/contribute.

23.

ETRI. (2017). 기술이전 홈페이지. https://itec.etri.re.kr/itec/sub02/sub02_01.do.

25.
27.

John Danaher. (2016). Reverse turing tests: Are humans becoming more machine-like? Philosophical Disquisitions. http://philosophicaldisquisitions.blogspot.kr/2016/07/reverse-turing-tests-are-humans.html.

28.

Krause, M. G.. (2007). Interaction in virtual archives: the polar bear expedition digital collections next generation finding aid. American Archivist, 70(2), 282-314.

29.

Kumar, V.. (2014). Making ‘Freemium' work: many start-ups fail to recognize the challenges of this popular business model. Harvard Business Review, 92(5), 27-29.

30.

Kurzweil, R.. (2005). The singularity is near: When humans transcend biology:The Viking Press.

31.

LeCun, Y.. (1998). Gradient-based learning applied to document recognition. Proc. of The IEEE, 86(11), 2278-2324.

32.

Markoff, John. (2011). Computer wins on ‘Jeopardy!': Trivial, It’s not. http://www.nytimes.com/2011/02/17/science/17jeopardy-watson.html.

33.

Mikolov, T.. Efficient estimation of word representation in vector space.

34.

Moorhead, Patrick. (2015). NVIDIA GTC: The race to perfect voice recognition using gpus. https://www.forbes.com/sites/patrickmoorhead/2015/03/27/nvidia-gtc-the-race-to-perfect-voice-recognition-using-gpus/#7be1add847ee.

35.

Myers, Erin. (2017). Little known facts about speech recognition technology. https://www.temi.com/blog/2017/10/11/little-known-facts-about-speech-recognition-technology/.

36.

National Archives and Records Administration. (2014). Managing government records directive. Automated electronic records management report/plan. Office of the Chief Records Officer for the U.S. Government.

38.

Neotalogic. (2016). Artificial intelligence in law: The state of play 2016. https://www.neotalogic.com/2016/02/28/artificial-intelligence-in-law-the-state-of-play-2016-part-1/.

39.
40.

Oracle. (2017). Multi-dimensional evolution of computing. Cloud-native-devops-workshop. https://github.com/oracle/cloud-native-devops-workshop/blob/master/containers/docker001/images/006-evolution.jpg.

41.

Price, Rob. (2017). Microsoft's AI is getting crazily good at speech recognition. http://uk.businessinsider.com/microsofts-speech-recognition-5-1-error-rate-human-level-accuracy-2017-8.

42.

Samuel, Arthur. (1959). Some studies in machine learning using the game of checkers. IBM Journal, 3(3), 210-229.

43.

Satell, Greg. (2016). 3 Reasons to believe the singuarlity is near. https://www.forbes.com/sites/gregsatell/2016/06/03/3-reasons-to-believe-the-singularity-is-near.

44.

Solon, Olivia. (2017). Oh the humanity! Poker computer trounces humans in big step for AI. https://www.theguardian.com/technology/2017/jan/30/libratus-poker-artificial-intelligence-professional-human-players-competition.

45.

Sun, C.. (2017). Revisiting unreasonable effectiveness of data in deep learning era. https://arxiv.org/pdf/1707.02968.pdf.

47.

Turing, A. M.. (1950). Computing machinery and intelligence. Mind, (49), 433-460.

48.

White House. (2016). Preparing for the Future of Artificial Intelligence. Executive Office of the President National Science and Technology Council. Committee on Technology. https://obamawhitehouse.archives.gov/sites/default/files/whitehouse_files/microsites/ostp/NSTC/preparing_for_the_future_of_ai.pdf.

49.

World Economic Forum. (2016). World Economic Forum Annual Meeting 2016: Mastering the Fourth Industrial Revolution. http://www3.weforum.org/docs/WEF_AM16_Report.pdf.

50.

Zhang, X.. Text understanding from scratch.

한국기록관리학회지