바로가기메뉴

본문 바로가기 주메뉴 바로가기

ACOMS+ 및 학술지 리포지터리 설명회

  • 한국과학기술정보연구원(KISTI) 서울분원 대회의실(별관 3층)
  • 2024년 07월 03일(수) 13:30
 

logo

  • P-ISSN1598-1487
  • E-ISSN2671-7247

국내 지자체 사진 기록물의 효율적 관리를 위한 메타데이터 설계 및 기계학습 기반 자동 인덱싱 방법 연구

Metadata Design and Machine Learning-Based Automatic Indexing for Efficient Data Management of Image Archives of Local Governments in South Korea

한국기록관리학회지 / Journal of Korean Society of Archives and Records Management, (P)1598-1487; (E)2671-7247
2020, v.20 no.2, pp.67-83
https://doi.org/10.14404/JKSARM.2020.20.2.067
김인아 (충남대학교)
강영선 (㈜레드윗 연구원)
이규철 (충남대학교)

초록

국내의 많은 지방자치단체에서는 지역에서 발생하는 사건들에 대한 시청각 기록물을 사람들이 쉽게 열람할 수 있도록 온라인 서비스를 제공하고 있다. 그러나 지자체들의 현재 사진 기록물 관리 방식은 표준적인 메타데이터가 부재하고 사진의 정보를 활용하지 않기 때문에 지자체 간 호환성과 검색 편의성이 낮은 문제점을 가진다. 이와 같은 문제점을 개선하기 위해, 본 논문에서는 국내 지자체 사진 기록물의 효율적 관리를 위한 메타데이터 설계와 기계학습 기반 자동 인덱싱 기술을 제안한다. 먼저, 본 논문에서는 국내 지자체 사진 기록물에 특화된 메타데이터를 설계하여 지자체 간 사진 기록물의 호환성을 높이고, 사진의 기본 정보와 특성을 나타낼 수 있는 요소들을 메타데이터 항목에 포함함으로써 사진 기록물의 효율적인 관리를 가능하게 한다. 또한, 기계학습 기술을 기반으로 사진의 사건과 카테고리를 반영하는 정보인 사진 속 텍스트와 객체를 자동 인덱싱하여, 사진 기록물 검색 시 사용자 검색의 편의성을 높인다. 마지막으로, 본 논문에서는 제안한 방법을 사용하여 국내 지자체 사진 기록물에서 텍스트와 객체를 자동으로 추출하고, 추출한 내용과 기본 정보를 본 논문에서 설계한 사진 기록물 메타데이터 항목에 저장하는 프로그램을 개발하였다.

keywords
사진 기록물, 메타데이터, 딥러닝, 자동 인덱싱, Image Archive, Metadata, OCR, Deep Learning, Automatic Indexing

Abstract

Many local governments in Korea provide online services for people to easily access the audio-visual archives of events occurring in the area. However, the current method of managing these archives of the local governments has several problems in terms of compatibility with other organizations and convenience for searching of the archives because of the lack of standard metadata and the low utilization of image information. To solve these problems, we propose the metadata design and machine learning-based automatic indexing technology for the efficient management of the image archives of local governments in Korea. Moreover, we design metadata items specialized for the image archives of local governments to improve the compatibility and include the elements that can represent the basic information and characteristics of images into the metadata items, enabling efficient management. In addition, the text and objects in images, which include pieces of information that reflect events and categories, are automatically indexed based on the machine learning technology, enhancing users’ search convenience. Lastly, we developed the program that automatically extracts text and objects from image archives using the proposed method, and stores the extracted contents and basic information in the metadata items we designed.

keywords
사진 기록물, 메타데이터, 딥러닝, 자동 인덱싱, Image Archive, Metadata, OCR, Deep Learning, Automatic Indexing

한국기록관리학회지