ISSN : 1598-1487
정보기술의 발전에 따라 아카이브의 디지털화가 가속화되고 있다. 그런데 전통적인 방식의 디지털 아카이브는 기록을 효과적으로 검색하고 연계하고 이해하는 데 한계가 있다. 본 논문은 디지털 아카이브의 활용성을 극대화하기 위한 방안으로 관계 중심의 지식그래프 방식을 제안한다. 디지털 아카이브의 사례인 ‘1997 외환위기 아카이브’의 특징을 검토하고, 아카이브에 포함된 모든 개체와 개체 사이의 관계는 RiC-O(Records in Contexts-Ontology) 기반의 지식그래프로 구축한다. 본 연구의 결과인 외환위기 지식그래프는 1997 외환위기 아카이브의 모든 개체를 기계가 처리할 수 있는 형식으로 구축한다. 디지털 아카이브와 비교해 지식그래프 접근은 개체의 정보, 개체 사이의 관계를 정확히 탐색할 수 있고, 이를 통해 의미검색, 지능형 서비스에 활용될 수 있다.
Along with the development of information technology, the digitalization of archives has also been accelerating. However, digital archives have limitations in effectively searching, interlinking, and understanding records. In response to these issues, this study proposes a knowledge graph that represents comprehensive relationships among heterogeneous entities in digital archives. In this case, the knowledge graph organizes resources in the archives on the Korean financial crisis of 1997 by transforming them into named entities that can be discovered by machines. In particular, the study investigates and creates an overview of the characteristics of the archives on the Korean financial crisis as a digital archive. All resources on the archives are described as entities that have relationships with other entities using semantic vocabularies, such as Records in Contexts-Ontology (RiC-O). Moreover, the knowledge graph of the Korean Financial Crisis of 1997 is represented by resource description framework (RDF) vocabularies, a machine-readable format. Compared to conventional digital archives, the knowledge graph enables users to retrieve a specific entity with its semantic information and discover its relationships with other entities. As a result, the knowledge graph can be used for semantic search and various intelligent services.