ISSN : 1013-0799
This study analyzes the relationship of citations appearing in the patent data to understand knowledge transfers and impacts between patent documents in the field of pharmaceutical research. Patent data were collected from a website, Google Patents. The top 25 assignees were selected by searching for patent documents related to pharmaceutical research. We identify the citation relationships between assignees, then calculate and compare the values of h-index and derived indicators by using the number of citations and rank for each document of each assignee. As a result, in the case of pharmaceutical research, the assignee, such as ‘Pfizer, MIT, and Abbott’ shows a high impact. Among the five bibliometric indicators, the g-index and hS-index show similar results, and the indicators are the most related to the rankings of Total Citation Frequency, Cites per Patents, and Maximum Citation Frequency. In addition, it is highly related to the five indicators in the order of Total Citation Frequency, Cites per Patents, and Maximum Citation Frequency. In some cases, it is difficult to make an accurate comparison with Cites per Patents alone, which is previously known to indicate the technological influence of patent assignees.
The purpose of this study was to present a plan on the effect of non-face-to-face services on library anxiety facilities by analyzing the library anxiety factors of university library users. To this end, we look at the cases of university library user service response activities in response to the COVID-19 crisis and select 40 schools with the highest number of library visitors per student from among domestic four-year university libraries with 5,000 or more and less than 10,000 students. Methods of information service and program cases were analyzed, and K-LAS was reconstructed and surveyed for current students using the K university library, and frequency analysis, descriptive statistical analysis, exploratory factor analysis, and reliability analysis, correlation analysis, and multiple regression analysis were applied to analyze the library anxiety factors of users. Identify the relationship between 5 library anxiety factors and non-face-to-face service activation factors, such as physical/environmental factors of the library, data search selection factors, digital information system factors, librarian (staff) factors, and psychological/emotional factors, and activate non-face-to-face services. The influence of these factors on library anxiety factors was examined, and as a result, it was found that non-face-to-face service activation factors had the greatest influence on library digital information system anxiety factors. Based on the analysis results, it was attempted to derive a plan to relieve users’ library anxiety by activating non-face-to-face services.
The objective of this study is to investigate the factors which influence biotechnology scientists’ data sharing intention. This study employed Ostrom’s theory of collective action. The target population of this study includes scientists and students of biotechnology field in South Korea. A total of 411 responses which collected by e-mail were used for the final data analysis. The summary of this study is as follows. First, norm of data sharing and academic reciprocity were found to have significant positive influences on data sharing intention directly. Second, perceived community trust was found to have significant positive influences on data sharing intention when academic reciprocity was the mediator. Third, academic reputation showed the moderating effects on the relationship between norm of data sharing and academic reciprocity, and between norm of data sharing and data sharing intention. These findings show that researchers can approach the data sharing behaviors by using the mechanism of trust, norms, reciprocity, and reputation and indicate necessity for a development of academic reputation system to promote more data sharing behaviors of researchers.
As basic data that can systematically support and evaluate R&D activities as well as set current and future research directions by grasping specific trends in domestic academic research, I sought efficient ways to assign standardized subject categories (control keywords) to individual journal papers. To this end, I conducted various experiments on major factors affecting the performance of automatic classification, focusing on feature selection techniques, for the purpose of automatically allocating the classification categories on the National Research Foundation of Korea’s Academic Research Classification Scheme to domestic journal papers. As a result, the automatic classification of domestic journal papers, which are imbalanced datasets of the real environment, showed that a fairly good level of performance can be expected using more simple classifiers, feature selection techniques, and relatively small training sets.
The number of depressed patients in Korea and around the world is rapidly increasing every year. However, most of the mentally ill patients are not aware that they are suffering from the disease, so adequate treatment is not being performed. If depressive symptoms are neglected, it can lead to suicide, anxiety, and other psychological problems. Therefore, early detection and treatment of depression are very important in improving mental health. To improve this problem, this study presented a deep learning-based depression tendency model using Korean social media text. After collecting data from Naver KonwledgeiN, Naver Blog, Hidoc, and Twitter, DSM-5 major depressive disorder diagnosis criteria were used to classify and annotate classes according to the number of depressive symptoms. Afterwards, TF-IDF analysis and simultaneous word analysis were performed to examine the characteristics of each class of the corpus constructed. In addition, word embedding, dictionary-based sentiment analysis, and LDA topic modeling were performed to generate a depression tendency classification model using various text features. Through this, the embedded text, sentiment score, and topic number for each document were calculated and used as text features. As a result, it was confirmed that the highest accuracy rate of 83.28% was achieved when the depression tendency was classified based on the KorBERT algorithm by combining both the emotional score and the topic of the document with the embedded text. This study establishes a classification model for Korean depression trends with improved performance using various text features, and detects potential depressive patients early among Korean online community users, enabling rapid treatment and prevention, thereby enabling the mental health of Korean society. It is significant in that it can help in promotion.
This preliminary study examined the status of data science-related course syllabi in the American Library Association (ALA) accredited Library and Information Science (LIS) programs. The purpose of this study was to explore LIS course syllabi related to data science, such as course title, course description, learning outcomes, and weekly topics. LIS programs offer various topics in data science such as the introduction to data science, data mining, database, data analysis, data visualization, data curation and management, machine learning, metadata, and computer programming. This study contributes to helping instructors develop or revise course materials to improve course competencies related to data science in the ALA-accredited LIS programs.
The purpose of this study is to derive the operation strategies for establishing the mid-to-long-term comprehensive library development plans considering the identity and specificity of Anyang City. For this purpose, this study proceeded as follows. First, to understand the internal and external environment and regional characteristics of Anyang City, various literature and statistical data related to Anyang City were collected, analyzed, and organized. Second, the operation status of Anyang municipal libraries was analyzed with data such as 「National Library Statistics System」, 「Gyeonggido Public Library Yearbook」, and various library-related laws. Third, a survey with open-ended questions was conducted for twenty-six librarians working in Anyang municipal libraries to collect opinions on the identity of Anyang and the overall operations of the libraries. Lastly, by reflecting the current status analysis, the latest library trends, policies, and sociocultural environments, detailed operation strategies that can serve as a basis for establishing mid-to long term development plans for Anyang municipal libraries in the future were proposed. The above operating strategies were proposed by dividing into six areas such as (1) the plans for organizational system and manpower composition, (2) the facility plans for balanced regional development, (3) the collection development and preservation direction, (4) the special subject materials service plans, (5) the for establishing cooperation system, and (6) the public relations plans.
In contemporary society, the importance of ‘Citizen Participation’ has been recognized and actively used in various fields. Archives are also planning citizen participation activities according to the trend, but there is a limit to taking the form of passive participation activities such as participation in contests and donation of records. The ultimate purpose of this study is to prepare issues and specific action plans to induce more active citizen participation in domestic archives. To this end, first, previous studies related to citizen participation in the field of records management were reviewed, and terms and concepts were established. Next, advanced cases that are stably operating overseas were selected and analyzed from various aspects, and through this, specific program operation elements and pros and cons were identified. After that, the current status of domestic archives that have or are planning to engage in citizen participation activities was investigated to derive factors to be considered from a practical point of view when introducing the actual program. Based on this study, it is hoped that it will contribute to the establishment of a participating recording culture by designing and operating Citizen-Participating Programs suitable for individual archives.
SIARD_KR is an administrative information dataset preservation tool. It is a partially modified version of SIARD, technology used for long-term preservation of relational databases developed by the Swiss Federal Archives, to suit Korea’s situation better. Previous studies have focused on how SIARD is able to effectively extract all data contained in the relational database without loss. However, not all data contained in the database is meaningful information, that is, an administrative information dataset. This paper began, therefore, with the awareness of the problem of whether SIARD_KR reflects the characteristics of the administrative information dataset. SIARD_KR is not only a tool for extracting data stored in the DB. We want to see if it is capable of identifying and extracting only meaningful information, and maintaining meaningful information, even if it is separated from the original system. The purpose of this paper is to analyze the structure of SIARD_KR, identify expected problems, and suggest improvement measures for them.
In an intelligent information society, VR technology is attracting attention as next-generation technology, and its importance as been emphasized. Against this background, there is a need to incorporate VR technology in libraries. The purpose of this study is to investigate and classify VR contents used in domestic and foreign libraries, and to analyze their characteristics and status. Therefore, in this study, cases of VR content were collected and analyzed for domestic and foreign libraries to which VR technology is applied and based on the implications of the analysis results, matters to be noted when applying VR content to the library in the future were suggested. This study is meaningful in that it conducted a study based on actual cases targeting VR content that was not discussed intensively in previous studies.
In this study, we analyzed comments on news articles of representative companies of the three industries (i.e., semiconductor, secondary battery, and bio industries) that had been listed as national strategic technology projects of South Korea to identify public opinions towards them. In addition, we analyzed the relationship between changes in public opinion and stock price. ‘Samsung Electronics’ and ‘SK Hynix’ in the semiconductor industry, ‘Samsung SDI’ and ‘LG Chem’ in the secondary battery industry, and ‘Samsung Biologics’ and ‘Celltrion’ in the bio-industry were selected as the representative companies and 47,452 comments of news articles about the companies that had been published from January 1, 2020, to December 31, 2020, were collected from Naver News. The comments were grouped into positive, neutral, and negative emotions, and the dynamic topics of comments over time in each group were analyzed to identify the trends of public opinion in each industry. As a result, in the case of the semiconductor industry, investment, COVID-19 related issues, trust in large companies such as Samsung Electronics, and mention of the damage caused by changes in government policy were the topics. In the case of secondary battery industries, references to investment, battery, and corporate issues were the topics. In the case of bio-industries, references to investment, COVID-19 related issues, and corporate issues were the topics. Next, to understand whether the sentiment of the comments is related to the actual stock price, for each company, the changes in the stock price and the sentiment values of the comments were compared and analyzed using visual analytics. As a result, we found a clear relationship between the changes in the sentiment value of public opinion and the stock price through the similar patterns shown in the change graphs. This study analyzed comments on news articles that are highly related to stock price, identified changes in public opinion trends in the COVID-19 era, and provided objective feedback to government agencies’ policymaking.
This study aims to present directions for improving information services of medical libraries in small and medium-sized hospitals by exploring the information use behavior and information needs of nurses, medical technicians, and pharmacists who had not been studied. The research design was conducted based on the reviewing theoretical background studies, and in-depth semi-structured interviews were conducted with nurses, medical technicians, and pharmacists working in small and medium-sized hospitals. The results show their information needs, information use behavior, and perceptions of the medical library in the hospital. Based on these results, this study suggests ways to improve the information services provided by medical libraries in hospitals. This research is meaningful because it was first to explore the information use behavior and information needs of health care professionals working in small and medium-sized hospitals.
Intellectual structure analysis, which quantitatively identifies the structure, characteristics, and sub-domains of fields, has rapidly increased in recent years. Analysis techniques traditionally used to conduct intellectual structure analysis research include bibliographic coupling analysis, co-citation analysis, co-occurrence analysis, and author bibliographic coupling analysis. This study proposes a novel intellectual structure analysis method, Keyword Bibliographic Coupling Analysis (KBCA). The Keyword Bibliographic Coupling Analysis (KBCA) is a variation of the author bibliographic coupling analysis, which targets keywords instead of authors. It calculates the number of references shared by two keywords to the degree of coupling between the two keywords. A set of 1,366 articles in the field of ‘Open Data’ searched in the Web of Science were collected using the proposed KBCA technique. A total of 63 keywords that appeared more than 7 times, extracted from 1,366 article sets, were selected as core keywords in the open data field. The intellectual structure presented by the KBCA technique with 63 key keywords identified the main areas of open government and open science and 10 sub-areas. On the other hand, the intellectual structure network of co-occurrence word analysis was found to be insufficient in the overall structure and detailed domain structure. This result can be considered because the KBCA sufficiently measures the relationship between keywords using the degree of bibliographic coupling.
This study aims to understand topics of incivility related to COVID-19 from analyzing Twitter posts including COVID-19-related hate speech. To achieve the goal, a total of 63,802 tweets that were created between December 1st, 2019, and August 31st, 2021, covering three targets of hate speech including region and public facilities, groups of people, and religion were analyzed. Frequency analysis, dynamic topic modeling, and keyword co-occurrence network analysis were used to explore topics and keywords. 1) Results of frequency analysis revealed that hate against regions and public facilities showed a relatively increasing trend while hate against specific groups of people and religion showed a relatively decreasing trend. 2) Results of dynamic topic modeling analysis showed keywords of each of the three targets of hate speech. Keywords of the region and public facilities included “Daegu, Gyeongbuk local hate”, “interregional hate”, and “public facility hate”; groups of people included “China hate”, “virus spreaders”, and “outdoor activity sanctions”; and religion included “Shincheonji”, “Christianity”, “religious infection”, “refusal of quarantine”, and “places visited by confirmed cases”. 3) Similarly, results of keyword co-occurrence network analysis revealed keywords of three targets: region and public facilities (Corona, Daegu, confirmed cases, Shincheonji, Gyeongbuk, region); specific groups of people (Coronavirus, Wuhan pneumonia, Wuhan, China, Chinese, People, Entry, Banned); and religion (Corona, Church, Daegu, confirmed cases, infection). This study attempted to grasp the public’s anti-citizenship public opinion related to COVID-19 by identifying domestic COVID-19 hate targets and keywords using social media. In particular, it is meaningful to grasp public opinion on incivility topics and hate emotions expressed on social media using data mining techniques for hate-related to COVID-19, which has not been attempted in previous studies. In addition, the results of this study suggest practical implications in that they can be based on basic data for contributing to the establishment of systems and policies for cultural communication measures in preparation for the post-COVID-19 era.
The purposes of this study include i) to understand the circumstances of exposure to information during foreign refugees’ stay in South Korea, ii) to investigate their information needs and the use of information sources, and iii) to propose the change needed in the Korean society, the role of South Korea in the global community, and the service direction of libraries and information professionals. To this end, legally recognized refugees who have stayed in South Korea were recruited for semi-structured in-depth interviews and observations on their perception, situation, and active behavior. The discussions were transcribed for coding. The codes were analyzed by content analysis technics based on relevant previous studies and factors of Dervin’s Sense-making theory and Chatman’s Information Poverty theory. Based on these analyses, this study proposed strategies for foreign refugees and individuals and public organizations, including libraries and NGOs, from an information service perspective. It is expected that the proposed strategies will supplement related empirical quantitative research and add value to information services for solving information problems.