바로가기메뉴

본문 바로가기 주메뉴 바로가기

ACOMS+ 및 학술지 리포지터리 설명회

  • 한국과학기술정보연구원(KISTI) 서울분원 대회의실(별관 3층)
  • 2024년 07월 03일(수) 13:30
 

logo

메뉴

두타산입술대고둥아재비 (Mirus junensis) 의 arginine kinase 유전자를 이용한 분자계통분류학적 연구

Molecular Phylogenetic studies of Mirus junensis using Arginine kinase gene sequence

초록

- 두타산입술대고둥아재비 (M. junensis) 의 Arginine kinase 유전자는 1,074 bp, 아미노산 358 개로 이루어져 있다. - BLAST를 통해 얻은 13 종의 ArK 참고서열들과 두타산입술대고둥아재비의 ArK 서열을 다중서열정렬한 결과 ArK 특이 잔기가 보존되어 있음을 알 수 있었다. - MEGA7 소프트웨어를 활용하여 multiple alignment 한 후, Maximum-Likelihood 방법으로 Molecular phylogenetic analysis 를 수행한 결과, N. samarangae, A. kurodai, B. glabrata, S. libertinam, C. ebraeus, C. grata 와 같은 복족강들과 같은 분류군으로 묶이는 것을 확인 할 수 있었다. - 이러한 결과 ArK 유전자 서열은 계통분류학적 연구에 유용하게 활용될 수 있음을 확인할 수 있었다.

keywords
Mirus junensis, Arginine kinase, Phylogenetic

Abstract

Arginine kinase gene belongs to phosphagen super family and is one of the transferases such as glycocyamine kinase (GK), lombricine kinase (LK), taurocyamine kinase (TK) and creatine kinase (CK) which are expressed in inverterbrates. Arginine kinase (ArK) is commonly called arginine phosphokinase, adenosine 5'-triphosphate, L-arginine, N-phosphotransferase and plays an important role in transporting intracellular energy and regulating phosphoric acid concentration. ArK is also known to play a critical role in arginine and proline metabolism. In this study, we conducted transcriptomic analysis of Mirus junensis using the Next Generation Sequencer and all the sequences containing arginine kinase were obtained by using BLASTx against NCBI NR database and PANM database. We confirmed 358 amino acid residues and 1,074 bp coding region of ArK gene. Using BLAST analysis, we collected 14 similar sequences of M. junensis ArK. Analsysis of dendrogram derived from multiple sequence alignment using clustalW engine of MEGA 7 program showed that it is most similar to Nesiohelix samarangae and belongs to Mollusk with Aplysia kurodai, Conus ebraeus. The ArK of M. junensis needs further investigation about immune system and physiological study.

keywords
Mirus junensis, Arginine kinase, Phylogenetic

참고문헌

1.

Burge, C.B., and Karlin, S. (1998) Finding the genes in genomic DNA. Current Opinion in Structural Biology, 8: 346-354.

2.

Dumas, C., and Camonis, J. (1993) Cloning and sequence analysis of the cDNA for arginine kinase of lobster muscle. Journal of Biological Chemistry, 268: 21599-21605.

3.

Ehsan, M., Gao, W., Gadahi, J.A., Lu, M., Liu, X., Wang, Y., Yan, R., Xu, L., Song, X., and Li, X. (2017) Arginine kinase from Haemonchus contortus decreased the proliferation and increased the apoptosis of goat PBMCs in vitro. Parasites & Vectors, 10: 311.

4.

Eun Jeong, J., and Lee, Y.S. (2013) Identification, sequence characterization and expression analysis of the arginine kinase gene in response to laminarin challenge from the Oriental land snail, Nesiohelix samarangae pp.

5.

Garcia-Orozco, K.D., Aispuro-Hernandez, E., Yepiz-Plascencia, G., Calderon-de-la-Barca, A.M., and Sotelo-Mundo, R.R. (2007) Molecular Characterization of Arginine Kinase, an Allergen from the Shrimp Litopenaeus vannamei. International Archives of Allergy and Immunology, 144: 23-28.

6.

Haas, B.J., Papanicolaou, A., Yassour, M., Grabherr, M., Blood, P.D., Bowden, J., Couger, M.B., Eccles, D., Li, B., Lieber, M., MacManes, M.D., Ott, M., Orvis, J., Pochet, N., Strozzi, F., Weeks, N., Westerman, R., William, T., Dewey, C.N., Henschel, R., LeDuc, R.D., Friedman, N., and Regev, A. (2013) De novo transcript sequence reconstruction from RNA-Seq: reference generation and analysis with Trinity. Nature protocols, 8: 10.1038/nprot.2013.1084.

7.

Joshi, N.A., and Fass, J.N. (2011) Sickle: A sliding-window, adaptive, quality-based trimming tool for FastQ files

8.

Kang, S.W., Park, S., Patnaik, B.B., Ju Hwang, H., Chung, J.M., Kwon Song, D., Park, Y.-S., Sang Lee, J., Han, Y., Park, H.-S., and Lee, Y.S. (2016) The Protostome database (PANM-DB): Version 2.0 release with updated sequences pp.

9.

Kumar, S., Stecher, G., and Tamura, K. (2016) MEGA7: Molecular Evolutionary Genetics Analysis Version 7.0 for Bigger Datasets. Molecular Biology and Evolution, 33: 1870-1874.

10.

Larkin, M.A., Blackshields, G., Brown, N.P., Chenna, R., McGettigan, P.A., McWilliam, H., Valentin, F., Wallace, I.M., Wilm, A., Lopez, R., Thompson, J.D., Gibson, T.J., and Higgins, D.G. (2007) Clustal W and Clustal X version 2.0. Bioinformatics, 23: 2947-2948.

11.

McGuffin, L.J., Bryson, K., and Jones, D.T. (2000) The PSIPRED protein structure prediction server. Bioinformatics, 16: 404-405.

12.

Newsholme, E.A., Beis, I., Leech, A.R., and Zammit, V.A. (1978) The role of creatine kinase and arginine kinase in muscle. Biochemical Journal, 172: 533-537.

13.

Pereira, C.A. (2014) Arginine kinase: a potential pharmacological target in trypanosomiasis. Infect Disord Drug Targets, 14: 30-36.

14.

Pertea, G., Huang, X., Liang, F., Antonescu, V., Sultana, R., Karamycheva, S., Lee, Y., White, J., Cheung, F., Parvizi, B., Tsai, J., and Quackenbush, J. (2003) TIGR Gene Indices clustering tools (TGICL): a software system for fast clustering of large EST datasets. Bioinformatics, 19: 651-652.

15.

Rice, P., Longden, I., and Bleasby, A. (2000) EMBOSS: The European Molecular Biology Open Software Suite. Trends in Genetics, 16: 276-277.

16.

Storey, K.B. (1977) Purification and characterization of arginine kinase from the mantle muscle of the squid, Symplectoteuthis oualaniensis: Role of the phosphagen/phosphagen kinase system in a highly aerobic muscle. Archives of Biochemistry and Biophysics, 179: 518-526.

17.

Suzuki, T., and Furukohri, T. (1994) Evolution of Phosphagen Kinase: Primary Structure of Glycocyamine Kinase and Arginine Kinase from Invertebrates. Journal of Molecular Biology, 237: 353-357.

18.

Suzuki, T., and Yamamoto, Y. (2000) Gene structure of two-domain arginine kinases from Anthopleurajaponicus and Pseudocardiumsachalinensis. Comparative Biochemistry and Physiology Part B: Biochemistry and Molecular Biology, 127: 513-518.

19.

Uda, K., Fujimoto, N., Akiyama, Y., Mizuta, K., Tanaka, K., Ellington, W.R., and Suzuki, T. (2006) Evolution of the arginine kinase gene family. Korean J. Parasitol., 48

20.

Uda, K., Fujimoto, N., Akiyama, Y., Mizuta, K., Tanaka, K., Ellington, W.R., and Suzuki, T. (2006) Evolution of the arginine kinase gene family. Comparative Biochemistry and Physiology Part D: Genomics and Proteomics, 1: 209-218.

21.

Uda, K., Fujimoto, N., Akiyama, Y., Mizuta, K., Tanaka, K., Ellington, W.R., and Suzuki, T. (2010) Evolution of the arginine kinase gene family. Korean J. Parasitol., 48

22.

Zhou, G., Somasundaram, T., Blanc, E., Parthasarathy, G., Ellington, W.R., and Chapman, M.S. (1998) Transition state structure of arginine kinase: Implications for catalysis of bimolecular reactions. Proceedings of the National Academy of Sciences of the United States of America, 95: 8449-8454.

23.

이준상, and 손민호 (2012) 한국의 멸종위기 야생동 식물 적색 자료집 연체동물 pp. NIBR. Korea

logo