바로가기메뉴

본문 바로가기 주메뉴 바로가기

ACOMS+ 및 학술지 리포지터리 설명회

  • 한국과학기술정보연구원(KISTI) 서울분원 대회의실(별관 3층)
  • 2024년 07월 03일(수) 13:30
 

logo

메뉴

멸종위기야생동물 Ⅱ급 Satsuma myomphala (거제외줄달팽이) 의 argrinine kinase 유전자를 이용한 계통학적 분석

Phylogenetic analysis of endangered wild animal Class II Satsuma myomphala using the argrinine kinase gene

Abstract

Arginine kinase (AK) belongs to the phosphagen kinase (PK) super family group of enzyme that has an essential role in maintaining energy homeostasis by catalyzing the re-phosphorylation of ADP. The AK gene is used for phylogenetic analysis in arthropods, mollusks, and Nematoda, and has been reported to branch in the Phylum unit. Satsuma myomphala has been reported as an indigenous species in Northeast Asia, including Korea and Japan. Particularly in Korea, it was registered as an endangered wildlife class 2 in 2017. Therefore, the preservation of species and securing genetic resources became more important. The genetic resources of S. myomphala registered on the NCBI GenBank have only six nucleotides and two proteins registered. The AK sequence was extracted from the RNAseq data which was obtained from Illumina Hiseq 2500 platfrom. After sequencing, de novo assembly and clustering, 103,774 unigenes were generated. Through annotation step by using the PANM database and BLAST program, we obtained AK sequence of 354 amino acid residues containing a 1,062 bp coding region. The AK sequence was verified using the BLAST program in the NCBI nr database, and phylogenetic analysis with the AK sequences of Gastropoda, Bivalvia, and Cephalopoda registered in NCBI was conducted. A phylogenetic dendrogram was generated using the MEGA program, and we confirmed the phylogenetic relationships. In addition, the 2D and 3D structures of the AK gene were predicted.

keywords
Arginine kinase, Satsuma myomphala, Phylogenetics analysis

참고문헌

1.

Buchan, D.W.A., and Jones, D.T. (2019) The PSIPRED Protein Analysis Workbench: 20 years on. Nucleic Acids Res., 47: W402-W407.

2.

Felsenstein, J. (1985) Confidence limits on phylogenies:an approach using the bootstrap. evolution, 39:783-791.

3.

Grabherr, M.G., Haas, B.J., Yassour, M., Levin, J.Z., Thompson, D.A., Amit, I., Adiconis, X., Fan, L., Raychowdhury, R., Zeng, Q., Chen, Z., Mauceli, E., Hacohen, N., Gnirke, A., Rhind, N., di Palma, F., Birren, B.W., Nusbaum, C., Lindblad-Toh, K., Friedman, N., and Regev, A. (2011) Full-length transcriptome assembly from RNA-Seq data without a reference genome. Nat. Biotechnol., 29: 644-652.

4.

Jarilla, B.R., Uda, K., Suzuki, T., Acosta, L.P., Urabe, M., and Agatsuma, T. (2014) Characterization of arginine kinase from the caenogastropod Semisulcospira libertina, an intermediate host of Paragonimus westermani. Journal of Molluscan Studies, 80: 444-451.

5.

Jeong, J.E., and Lee, Y.S. (2013) Identification, sequence characterization and expression analysis of the arginine kinase gene in response to laminarin challenge from the Oriental land snail, Nesiohelix samarangae. The Korean Journal of Malacology, 29:171-179.

6.

Jones, D.T., Taylor, W.R., and Thornton, J.M. (1992) The rapid generation of mutation data matrices from protein sequences. Bioinformatics, 8: 275-282.

7.

Joshi, N., and Fass, J. (2011) Sickle: A sliding-window, adaptive, quality-based trimming tool for FastQ files (Version 1.33)[Software].

8.

Kang, S.W. (2016) Genome and transcriptome characterization of the four Korean land snails using NGS and bioinformatics databases. Department of Biology, Gradute School of Soonchunhyang University

9.

Kang, S.W., Park, S.Y., Hwang, H.J., Chung, J.M., Sang, M.K., Min, H.R., Park, J.E., Cho, H.C., Patnaik, B.B., and Lee, Y.S. (2019) PANM DB ver 3.0 : An update of the bioinformatics database for annotation of large datasets from sequencing of species under Protostomia clade. The Korean Journal of Malacology, 35: 73-75.

10.

Kang, S.W., Patnaik, B.B., Hwang, H.J., Park, S.Y., Chung, J.M., Song, D.K., Patnaik, H.H., Lee, J.B., Kim, C., Kim, S., Park, H.S., Park, S.H., Park, Y.S., Han, Y.S., Lee, J.S., and Lee, Y.S. (2017) Sequencing and de novo assembly of visceral mass transcriptome of the critically endangered land snail Satsuma myomphala: Annotation and SSR discovery. Comp Biochem. Physiol. Part D Genomics Proteomics, 21:77-89.

11.

Kumar, S., Stecher, G., Li, M., Knyaz, C., and Tamura, K. (2018) MEGA X: Molecular Evolutionary Genetics Analysis across Computing Platforms. Mol. Biol. Evol., 35: 1547-1549.

12.

Lee, J.S., and Son, M.-H. (2012) Red Data Book of Endangered Mollusks in Korea pp. 40-41. National Institute of biological resources.

13.

Madeira, F., Park, Y.M., Lee, J., Buso, N., Gur, T., Madhusoodanan, N., Basutkar, P., Tivey, A.R.N., Potter, S.C., Finn, R.D., and Lopez, R. (2019) The EMBL-EBI search and sequence analysis tools APIs in 2019. Nucleic Acids Res., 47: W636-W641.

14.

Mahon, B.C., and Neigel, J.E. (2008) Utility of arginine kinase for resolution of phylogenetic relationships among Brachyuran genera and families. Mol. Phylogenet Evol., 48: 718-727.

15.

Martin, M. (2011) Cutadapt removes adapter sequences from high-throughput sequencing reads. 2011, 17: 3.

16.

McGuffin, L.J., Bryson, K., and Jones, D.T. (2000) The PSIPRED protein structure prediction server. Bioinformatics, 16: 404-405.

17.

Min, D.-K. (2004) Mollusks in Korea pp. 566. Min Molluscan Research Institute.

18.

Min, H.R., Hwang, H.J., Chung, J.M., Sang, M.K., Cho, H.C., Park, J.E., Jung, K.Y., Park, H.S., Han, Y.S., and Lee, Y.S. (2018) Molecular Phylogenetic studies of Mirus junensis using Arginine kinase gene sequence. The Korean Journal of Malacology, 34:107-114.

19.

Pertea, G., Huang, X., Liang, F., Antonescu, V., Sultana, R., Karamycheva, S., Lee, Y., White, J., Cheung, F., Parvizi, B., Tsai, J., and Quackenbush, J. (2003)TIGR Gene Indices clustering tools (TGICL): a software system for fast clustering of large EST datasets. Bioinformatics, 19: 651-652.

20.

Rice, P., Longden, I., and Bleasby, A. (2000) EMBOSS:the European molecular biology open software suite. Elsevier current trends.

21.

Roy, A., Kucukural, A., and Zhang, Y. (2010) I-TASSER:a unified platform for automated protein structure and function prediction. Nat. Protoc., 5: 725-738.

22.

Saitou, N., and Nei, M. (1987) The neighbor-joining method: a new method for reconstructing phylogenetic trees. Molecular biology and evolution, 4: 406-425.

23.

Sang, M.K., Kang, S.W., Hwang, H.-J., Chung, J.M., Song, D.K., Min, H.R., Park, J.E., Ha, H.C., Lee, H.J., Hong, C.E., Ahn, Y.M., Park, S.Y., Park, Y.-S., Park, H.S., Han, Y.S., Lee, J.S., and Lee, Y.S. (2016)Molecular Phylogenetic Study of the Endangered Land Snail Satsuma myomphala Based on Metallothionein Gene. The Korean Journal of Malacology, 32: 263-268.

24.

Suzuki, T., Fukuta, H., Nagato, H., and Umekawa, M. (2000) Arginine kinase from Nautilus pompilius, a living fossil. Site-directed mutagenesis studies on the role of amino acid residues in the Guanidino specificity region. J. Biol. Chem., 275: 23884-23890.

25.

Suzuki, T., and Furukohri, T. (1994) Evolution of Phosphagen Kinase: Primary Structure of Glycocyamine Kinase and Arginine Kinase from Invertebrates. Journal of Molecular Biology, 237: 353-357.

26.

Suzuki, T., Inoue, N., Higashi, T., Mizobuchi, R., Sugimura, N., Yokouchi, K., and Furukohri, T. (2000) Gastropod arginine kinases from Cellana grata and Aplysia kurodai. Isolation and cDNAderived amino acid sequences. Comparative Biochemistry and Physiology Part B: Biochemistry and Molecular Biology, 127: 505-512.

27.

Suzuki, T., Kawasaki, Y., and Furukohri, T. (1997)Evolution of phosphagen kinase1: Isolation, characterization and cDNA-derived amino acid sequence of two-domain arginine kinase from the sea anemone Anthopleura japonicus. Biochemical Journal, 328: 301-306.

28.

Tanaka, K., Ichinari, S., Iwanami, K., Yoshimatsu, S., and Suzuki, T. (2007) Arginine kinase from the beetle Cissites cephalotes (Olivier). Molecular cloning, phylogenetic analysis and enzymatic properties. Insect Biochem. Mol Biol., 37: 338-345.

29.

Uda, K., Fujimoto, N., Akiyama, Y., Mizuta, K., Tanaka, K., Ellington, W.R., and Suzuki, T. (2006) Evolution of the arginine kinase gene family. Comp. Biochem. Physiol. Part D Genomics Proteomics, 1: 209-218.

30.

Uda, K., Iwai, A., and Suzuki, T. (2005) Hypotaurocyamine kinase evolved from a gene for arginine kinase. FEBS. Lett., 579: 6756-6762.

31.

Uda, K., Yamamoto, K., Iwasaki, N., Iwai, M., Fujikura, K., Ellington, W.R., and Suzuki, T. (2008)Two-domain arginine kinase from the deep-sea clam Calyptogena kaikoi-evidence of two active domains. Comp. Biochem. Physiol. B Biochem. Mol. Biol., 151:176-182.

32.

Uribe, J.E., Colgan, D., Castro, L.R., Kano, Y., and Zardoya, R. (2016) Phylogenetic relationships among superfamilies of Neritimorpha (Mollusca: Gastropoda). Mol. Phylogenet Evol., 104: 21-31.

33.

Yang, J., Yan, R., Roy, A., Xu, D., Poisson, J., and Zhang, Y. (2015) The I-TASSER Suite: protein structure and function prediction. Nat. Methods, 12:7-8.

34.

Yang, J., and Zhang, Y. (2015) I-TASSER server: new development for protein structure and function predictions. Nucleic Acids Res., 43: W174-181.

35.

서재화, 권선만, 이수연, 박창득, 이소희, 이정연, 유정선, and 서민환 (2018) 한눈에 보는 멸종위기 야생생물 (2017년 개정) pp. 332-333. 국립생물자원관.

logo