open access
메뉴ISSN : 1225-3480
This study examined the physiological responses of cockles exposed to thermal stress in order to optimize techniques for measurement of physiological alternations in cockles and understand the importance of thermal stress on summer mortality events. For these reasons, cockles acclimated to 25°C were exposed to 30°C, 35°C, or 40°C for 4h/day over eight days, and the condition index, nitric oxide (NO) concentration, burrowing rates and mortality rates were measured after each heat treatment. From the 1st day of exposure, and each day after, NO concentrations in cockles significantly increased when the temperatures was > 30°C. In contrast, decreases in phagocytosis rates were observed when specimens were exposed to 30°C from the 2nd day of exposure while the burrowing rates started to decline from the 6th day of exposure when exposed to > 35°C. In addition, the mortality rate of cockles exposed to 35°C for 5 days increased. This study confirmed that cockles exposed to temperatures above 30°C may experience physiological stress, possibly leading to death, depending on the exposure time.
Alexander, R., Stanton, R., & Dodd, J. (1993) Influence of Sediment Grain Size on the Burrowing of Bivalves: Correlation with Distribution and Stratigraphic Persistence of Selected Neogene Clams. Palaios, 8(3): 289-303. Doi: 10.2307/3515151.
De Andrade, J.T.M., Cordeiro, N.I.S., Montresor, L.C., Luz, D.M.R., Viana, E.M.F., Martinez, C.B., Vidigal, T.H.D.A. (2020) Tolerance of Limnoperna fortunei (Dunker, 1857) (Bivalvia: Mytilidae) to aerial exposure at different temperatures. Hydrobiologia. https://doi.org/10.1007/s10750-020-04191-4.
Gainey, L.F., Greenberg, M.J. (2003) Nitric oxvide mediates seasonal muscle potentiation in clam gills. Journal of experimental biology, 206(Pt 19): 3507-3520. Doi: 10.1242/jeb.00573.
Guo, H., Callaway, J.B., Ting, J.P. (2015) Inflammasomes:mechanism of action, role in disease, and therapeutics. Natural Medicine, 21(7): 677-87. http://doi.org/10.1038/nm.3893.
Huntley, J.W., Fursich, F.T., Alberti, M., Hethke, M., Liu, C. (2014) A complete Holocene record of trematode–bivalve infection and implications for the response of parasitism to climate change. Proceedings of the national academy of sciences of the United states of america, 23:111(51): 18150-18155. Doi:10.1073/pnas.1416747111.
Hwang, S.-C. 2012. “http//www.climate.go.kr/home/cc_data/presentation/20120402/20120402_presentation_5.pdf”http://www.climate.go.kr/home/cc_data/presentation/20120402/20120402_presentation_5.pdf. [Accessed Nov 1, 2020]
Hyun, J.-H., Choi, K.-S., Lee, K.-S., Lee, S.-H., Kim, Y.-K., Kang, C.-K. (2020) Climate change and anthropogenic impact around the Korean coastal ecosystems: Korean Long-term Marine Ecological Research (K-LTMER). Estuaries and Coasts, 43: 441–448. https://doi.org/10.1007/s12237-020-00711-6
Kang, S.G., Park, S.W., Kim, Y.K. (2000) The morphology of the hemocytes of the clam, Ruditapes philippinarum (Mollusca: Bivalvia). Journal of fish pathology, 13(2): 129-136. Doi: 1226-0819(pISSN).
KOSIS (2020) Korean Statistical Information Service.\Statistical database for agriculture and forestry/fishery [Accessed Nov 1, 2020]. https://kosis.kr/eng/ statisticslist/statisticslistindex.do?menuld=M_01_01&vxcd=MT_ETI TLE &parmTabld=M_01)01&statld=1971002&themald=#Selectstatsboxdiv.
Labreuche, Y., Soudant, P., Goncalves, M., Lambert, C., Nicolas, J.L. (2006) Effects of extracellular products from pathogenic Vibrio aestuarianus strain 01/32 on lethality and cellular immune responses of the oyster Crassostrea gigas. Development and comparative immunology, 30: 367-379. Doi: 10.1016/j.dci.2005.05.003.
Mángano, M.G., Buatois, L.A., West, R.R. & Maples, C.G. (2002) Ichnology of an equatorial tidal flat: the Stull Shale Member at Waverly, eastern Kansas. Bulletin of the Kansas Geological Survey, 245: 1–130. Doi: https://doi.org/10.1080/10420940290208171.
Matozzo, V., and Marin, M. G. (2011) Bivalve immune responses and climate changes: is there a relationship? Invertebrate Survival Journal., 8(1):70-77.
Nam, K. W., Yang, H. S., Park, K. I. (2013)Quantification of nitric oxide concentration in the hemocytes of Manila clam Ruditapes philippinarum by using 4,5-diaminofluorescein diacetate (DAF-2)detection method. The Korean Journal of Malacology, 29: 10. 9710/kjm.2013.29.1.15.
Nam, K. W., Jeung, H. D., Song, J. H., Park, K. H., Choi, K. S., Park, K. I. (2018) High parasite burden increses the surfacing and mortality of the Manila clam (Ruditapes philippinarum) in intertidal sandy mudflats on the west coast of Korea during hot summer. Parasites & Vectors, 11: 42. Doi: 10.1186/s13071-018-2620-3.
Nicchitta, C. V., Ellington, W. R. (1983) Energy metabolism during air exposure and recovery in the high intertidal bivalve mollusc Geukensia demissa granosissima and the subtidal bivalve mollusc Modiolus squamosus. The Biological Bulleten,. 165(3):708-722. Doi: 10.2307/1541473.
NIFS (2018) Investigation of the cause of decline in fishery productivity in Yeoja bay ark shell (Andara kagoshimensis) of south coast off Korea. National Institute of Fisheries Science, Research Report. pp 56.
Pariseau J., Myrand, B., Desrosiers, G., Chevarie, L., Giguere, M. (2009) Influences of physical and biological variables on softshell clam (Mya arenaria Linneaus 1758) burial. Journal of Shellfish Research, 26:391-400. Doi: 10.2983/0730-8000(2007)26[391:IOPABV]2.0.CO;2.
Pipe, R.K. and Coles, J.A. (1995) Environmental contaminants influencing immunefunction in marine bivalve molluscs. Fish & Shellfish Immunology, 5:581-595. Doi: https://doi.org/10.1016/S1050-4648(95)80043-3.
Park, K. I. (2013) Variation of nitric oxide concentrations in response to shaking stress in the Manila clam Ruditapes philippinarum. The Korean Journal of Malacology, 29(1): 1-6. Doi: http://dx.doi.org/10.9710/kjm.2013.29.1.1.
Rahman, M.A., Henderson, S., Miller-Ezzy, P., Li, X.X., Qin, J.G. (2019) Immune response to temperature stress in three bivalve species: Pacific oyster Crassostrea gigas, Mediterranean mussel Mytilus galloprovincialis and mud cockle Katelysia rhytiphora. Fish & Shellfish Immunology, 86:868-874. Doi: 10.1016/j.fsi.2018.12.017.
Renault, T. (2015) Immunotoxicological effects of environmental contaminants on marine bivalves. Fish & Shellfish Immunology, 46: 10. 1016/j.fsi.2015.04.011.
Roberts, D., Rittschof, D., Gerhart, D. J., Schmidt, A. R., Hill, L. G., (1989) Vertical migration of the clam Mercenaria mercenaria (L.) (Mollusca:Bivalvia):environmental correlates and ecological significance. Journal of Experimental Marine Biology and Ecology, 126: 271-280. Doi: https://doi.org/10.1016/0022-0981(89)90192-5.
Salvemini D, Misko T.P, Masferrer, J.L., Seibert, K, Currie, M.G., Needleman, P. (1993) Nitric oxide activates cyclooxygenase enzymes. Proceedings of the National Academy of Sciences of the United States of America. 90(15): 7240-7244. Doi: 10.1073/pnas.90.15.7240.
Seuront, L., Nicastro, K. R., Zardi, G. I., Goberville, E. (2019) Decreased thermal tolerance under recurrent heat stress conditions explains summer mass mortality of the blue mussel Mytilus edulis. Scientific Reports, 9: 17498. Doi: https://doi.org/10.1038/s41598-019-53580-w.
Shin, Y. K. and Moon, T. S. (2005) Temperature tolerance and physiological changes of blood cockle, Tegillarca granosa. Journal of Korean Fisheries Society, 38: 251-256. Doi: https://doi.org/10.5657/kfas.2005.38.4.251.
Song, J. H., Kim, C. H., Park, S. W., Yu, J. H., Jo, Y. J. (2008) Seasonality of the Biological Activity Factors of the hard clam Meretrix lusoria in the Western Coast of Korea. Journal of Aquaculture, 21:111-122.
Song, L,, Wang, L, Qiu, L., Zhang, H. (2010) Bivalve immunity. Advanced Experimental Medicine and Biology, 708: 44-65. doi: 10.1007/978-1-4419-8059-5_3.
Taffala, C., Gomez-Leon, J., Novoa, B. and Figueras, A. (2003) Nitrite oxide production by carpet shell calm (Ruditapes decussatus) hemocytes. Development &Comparative Immunology, 27: 197-205. Doi: 10.1016/S0145-305X(02)00098-8.
Tarnowska, K., Verney, A., Wolowicz, M., Féral, J. P., Chenuil. A. (2012) Survival of male and female Cerastoderma glaucum (Bivalvia) during aerial exposure. Vie et Milieu - Life and Environment, 62(1): 23-28.
Waki, T., Takahashi, M., Eki, T., Hiasa, Umeda, L., Karakawa, N., Yoshinaga, T. (2018) Impact of Perkinsus olseni infection on a wild population of Manila clam Ruditapes philippinarum in Ariake Bay, Japan. Journal of Invertebrate Pathology, 153:134-144. Doi: https://doi.org/10.1016/j.jip.2018.03.001.
Wang, J., Ren, R. M., Yao, C. L. (2018). Oxidative stress responses of Mytilus galloprovincialis to acute cold and heat during air exposure. Journal of Molluscan Studies, 84: 285–292. Doi: https://doi.org/10.1093/mollus/eyy027.
Widdows, J., Bayne, B. L., Livingstone, D. R., Newell, R. I. E., Donkin, P. (1979) Physiological and biochemical responses of bivalve molluscs to exposure to air. Comparative Biochemistry and Physiology Part A:Physiology. 62(2): 301-308. Doi: https://doi.org/10.1016/0300-9629(79)90060-4.
Yim, C. Y. (2010). Nitric oxide and cancer. Korean Journal of Medicine, 78(4): 430-436.
Yin, X., Chen, P., Chen, H. Yan, X. (2017). Physiological performance of the intertidal Manila clam (Ruditapes philippinarum) to long-term daily rhythms of air exposure. Scientific Reports, 7: 41648. Doi:https://doi.org/10.1038/srep41648.
Yoon, Y-H., Jeong, D. (2018) Marine Environmental Characteristics of the Fishing Ground for Blood Cockle, Tegillarca granosa (Linnaeus) in the Northwestern Areas of Yeoja Bay, South Sea of Korea. Fall Conference Abstract Book, The Korean Society for Marine Environment and Energy. p. 250.