ISSN : 1226-0657
We investigate the existence of homoclinic orbits of the following systems of <TEX>$Li{\'{e}}nard$</TEX> type: <TEX>$a(x)x^'=h(y)-F(x)$</TEX>, <TEX>$y^'$</TEX>=-a(x)g(x), where <TEX>$h(y)=m{\mid}y{\mid}^{p-2}y$</TEX> with m > 0 and p > 1 and a, F, 9 are continuous functions such that a(x) > 0 for all <TEX>$x{\in}{\mathbb{R}}$</TEX> and F(0)=g(0)=0 and xg(x) > 0 for <TEX>$x{\neq}0$</TEX>. By a series of time and coordinates transformations of the above system, we obtain sufficient conditions for the positive orbits of the above system starting at the points on the curve h(y) = F(x) with x > 0 to approach the origin through only the first quadrant. The method of this paper is new and the results of this paper cover some early results on this topic.
Sugie, J.. (2005). Homoclinic orbits in generalized Lienard systems. Journal of Mathematical Analysis and Applications, 309(1), 211-226. 10.1016/j.jmaa.2005.01.023.
Aghajani, A.;Moradifam, A.. (2007). On the homoclinic orbits of the generalized Lienard equations. Applied Mathematics Letters, 20(3), 345-351. 10.1016/j.aml.2006.05.004.
Sugie, Jitsuro;Kono, Ai;Yamaguchi, Aya. (2007). Existence of limit cycles for Liénard-type systems with <I>p</I>-Laplacian. Nonlinear Differential Equations and Applications NoDEA, 14(1), 91-110. 10.1007/s00030-006-4045-5.
(1995). . J. Math. Anal. Appl., 191, 26-39.
Zou. (2003). . The Michigan Mathematical Journal, 51(1), 59-71. 10.1307/mmj/1049832893.
Sugie, Jitsuro. (2001). Liénard dynamics with an open limit orbit. Nonlinear Differential Equations and Applications, 8(1), 83-97. 10.1007/PL00001440.
(1985). . Funkcial Ekvac., 28, 171-192.
Sugie, J.;Chen, D.-L.;Matsunaga, H.. (1998). On Global Asymptotic Stability of Systems of Lienard Type. Journal of Mathematical Analysis and Applications, 219(1), 140-164. 10.1006/jmaa.1997.5773.
Bernard, P.. (2002). Homoclinic Orbits in Families of Hypersurfaces with Hyperbolic Periodic Orbits. Journal of Differential Equations, 180(2), 427-452. 10.1006/jdeq.2001.4062.
Ding, Y.;Girardi, M.. (1999). Infinitely many homoclinic orbits of a Hamiltonian system with symmetry. Nonlinear Analysis, 38(3), 391-415. 10.1016/S0362-546X(98)00204-1.