바로가기메뉴

본문 바로가기 주메뉴 바로가기

logo

  • P-ISSN1226-0657
  • E-ISSN2287-6081
  • KCI

EXISTENCE OF HOMOCLINIC ORBITS FOR LI¶ENARD TYPE SYSTEMS

Journal of the Korean Society of Mathematical Education Series B: The Pure and Applied Mathematics / Journal of the Korean Society of Mathematical Education Series B: The Pure and Applied Mathematics, (P)1226-0657; (E)2287-6081
2010, v.17 no.4, pp.389-396
Kim, Yong-In

Abstract

We investigate the existence of homoclinic orbits of the following systems of <TEX>$Li{\'{e}}nard$</TEX> type: <TEX>$a(x)x^'=h(y)-F(x)$</TEX>, <TEX>$y^'$</TEX>=-a(x)g(x), where <TEX>$h(y)=m{\mid}y{\mid}^{p-2}y$</TEX> with m > 0 and p > 1 and a, F, 9 are continuous functions such that a(x) > 0 for all <TEX>$x{\in}{\mathbb{R}}$</TEX> and F(0)=g(0)=0 and xg(x) > 0 for <TEX>$x{\neq}0$</TEX>. By a series of time and coordinates transformations of the above system, we obtain sufficient conditions for the positive orbits of the above system starting at the points on the curve h(y) = F(x) with x > 0 to approach the origin through only the first quadrant. The method of this paper is new and the results of this paper cover some early results on this topic.

keywords
Lienard type system, homoclinic orbit, phase plane analysis

Reference

1.

Sugie, J.. (2005). Homoclinic orbits in generalized Lienard systems. Journal of Mathematical Analysis and Applications, 309(1), 211-226. 10.1016/j.jmaa.2005.01.023.

2.

Aghajani, A.;Moradifam, A.. (2007). On the homoclinic orbits of the generalized Lienard equations. Applied Mathematics Letters, 20(3), 345-351. 10.1016/j.aml.2006.05.004.

3.

Sugie, Jitsuro;Kono, Ai;Yamaguchi, Aya. (2007). Existence of limit cycles for Li&eacute;nard-type systems with <I>p</I>-Laplacian. Nonlinear Differential Equations and Applications NoDEA, 14(1), 91-110. 10.1007/s00030-006-4045-5.

4.

(1995). . J. Math. Anal. Appl., 191, 26-39.

5.

Zou. (2003). . The Michigan Mathematical Journal, 51(1), 59-71. 10.1307/mmj/1049832893.

6.

Sugie, Jitsuro. (2001). Li&eacute;nard dynamics with an open limit orbit. Nonlinear Differential Equations and Applications, 8(1), 83-97. 10.1007/PL00001440.

7.

(1985). . Funkcial Ekvac., 28, 171-192.

8.

Sugie, J.;Chen, D.-L.;Matsunaga, H.. (1998). On Global Asymptotic Stability of Systems of Lienard Type. Journal of Mathematical Analysis and Applications, 219(1), 140-164. 10.1006/jmaa.1997.5773.

9.

Bernard, P.. (2002). Homoclinic Orbits in Families of Hypersurfaces with Hyperbolic Periodic Orbits. Journal of Differential Equations, 180(2), 427-452. 10.1006/jdeq.2001.4062.

10.

Ding, Y.;Girardi, M.. (1999). Infinitely many homoclinic orbits of a Hamiltonian system with symmetry. Nonlinear Analysis, 38(3), 391-415. 10.1016/S0362-546X(98)00204-1.

Journal of the Korean Society of Mathematical Education Series B: The Pure and Applied Mathematics