바로가기메뉴

본문 바로가기 주메뉴 바로가기

ACOMS+ 및 학술지 리포지터리 설명회

  • 한국과학기술정보연구원(KISTI) 서울분원 대회의실(별관 3층)
  • 2024년 07월 03일(수) 13:30
 

logo

  • P-ISSN1226-0657
  • E-ISSN2287-6081
  • KCI

EXISTENCE OF HOMOCLINIC ORBITS FOR LIENARD TYPE SYSTEMS

EXISTENCE OF HOMOCLINIC ORBITS FOR LI¶ENARD TYPE SYSTEMS

한국수학교육학회지시리즈B:순수및응용수학 / Journal of the Korean Society of Mathematical Education Series B: The Pure and Applied Mathematics, (P)1226-0657; (E)2287-6081
2010, v.17 no.4, pp.389-396
Kim, Yong-In (Department of Mathematics, University of Ulsan)

Abstract

We investigate the existence of homoclinic orbits of the following systems of <TEX>$Li{\'{e}}nard$</TEX> type: <TEX>$a(x)x^'=h(y)-F(x)$</TEX>, <TEX>$y^'$</TEX>=-a(x)g(x), where <TEX>$h(y)=m{\mid}y{\mid}^{p-2}y$</TEX> with m > 0 and p > 1 and a, F, 9 are continuous functions such that a(x) > 0 for all <TEX>$x{\in}{\mathbb{R}}$</TEX> and F(0)=g(0)=0 and xg(x) > 0 for <TEX>$x{\neq}0$</TEX>. By a series of time and coordinates transformations of the above system, we obtain sufficient conditions for the positive orbits of the above system starting at the points on the curve h(y) = F(x) with x > 0 to approach the origin through only the first quadrant. The method of this paper is new and the results of this paper cover some early results on this topic.

keywords
Lienard type system, homoclinic orbit, phase plane analysis

참고문헌

1.

Sugie, J.. (2005). Homoclinic orbits in generalized Lienard systems. Journal of Mathematical Analysis and Applications, 309(1), 211-226. 10.1016/j.jmaa.2005.01.023.

2.

Aghajani, A.;Moradifam, A.. (2007). On the homoclinic orbits of the generalized Lienard equations. Applied Mathematics Letters, 20(3), 345-351. 10.1016/j.aml.2006.05.004.

3.

Sugie, Jitsuro;Kono, Ai;Yamaguchi, Aya. (2007). Existence of limit cycles for Li&eacute;nard-type systems with <I>p</I>-Laplacian. Nonlinear Differential Equations and Applications NoDEA, 14(1), 91-110. 10.1007/s00030-006-4045-5.

4.

(1995). . J. Math. Anal. Appl., 191, 26-39.

5.

Zou. (2003). . The Michigan Mathematical Journal, 51(1), 59-71. 10.1307/mmj/1049832893.

6.

Sugie, Jitsuro. (2001). Li&eacute;nard dynamics with an open limit orbit. Nonlinear Differential Equations and Applications, 8(1), 83-97. 10.1007/PL00001440.

7.

(1985). . Funkcial Ekvac., 28, 171-192.

8.

Sugie, J.;Chen, D.-L.;Matsunaga, H.. (1998). On Global Asymptotic Stability of Systems of Lienard Type. Journal of Mathematical Analysis and Applications, 219(1), 140-164. 10.1006/jmaa.1997.5773.

9.

Bernard, P.. (2002). Homoclinic Orbits in Families of Hypersurfaces with Hyperbolic Periodic Orbits. Journal of Differential Equations, 180(2), 427-452. 10.1006/jdeq.2001.4062.

10.

Ding, Y.;Girardi, M.. (1999). Infinitely many homoclinic orbits of a Hamiltonian system with symmetry. Nonlinear Analysis, 38(3), 391-415. 10.1016/S0362-546X(98)00204-1.

한국수학교육학회지시리즈B:순수및응용수학