바로가기메뉴

본문 바로가기 주메뉴 바로가기

ACOMS+ 및 학술지 리포지터리 설명회

  • 한국과학기술정보연구원(KISTI) 서울분원 대회의실(별관 3층)
  • 2024년 07월 03일(수) 13:30
 

logo

  • P-ISSN1226-0657
  • E-ISSN2287-6081
  • KCI
Choi, Junesang(Department of Mathematics, Dongguk University) ; Agarwal, Praveen(Department of Mathematics, Anand International College of Engineering) pp.233-242 https://doi.org/10.7468/jksmeb.2013.20.4.233
초록보기
초록

Abstract

Certain interesting single (or double) infinite series associated with hypergeometric functions have been expressed in terms of Psi (or Digamma) function <TEX>${\psi}(z)$</TEX>, for example, see Nishimoto and Srivastava [8], Srivastava and Nishimoto [13], Saxena [10], and Chen and Srivastava [5], and so on. In this sequel, with a view to unifying and extending those earlier results, we first establish two relations which some double infinite series involving hypergeometric functions are expressed in a single infinite series involving <TEX>${\psi}(z)$</TEX>. With the help of those series relations we derived, we next present two functional relations which some double infinite series involving <TEX>$\bar{H}$</TEX>-functions, which are defined by a generalized Mellin-Barnes type of contour integral, are expressed in a single infinite series involving <TEX>${\psi}(z)$</TEX>. The results obtained here are of general character and only two of their special cases, among numerous ones, are pointed out to reduce to some known results.

Toumi, Mohamed Ali(Departement des Mathematiques, Faculte des Sciences de Bizerte) pp.243-249 https://doi.org/10.7468/jksmeb.2013.20.4.243
초록보기
초록

Abstract

Let A be an algebra and D a derivation of A. Then D is called algebraic nil if for any <TEX>$x{\in}A$</TEX> there is a positive integer n = n(x) such that <TEX>$D^{n(x)}(P(x))=0$</TEX>, for all <TEX>$P{\in}\mathbb{C}[X]$</TEX> (by convention <TEX>$D^{n(x)}({\alpha})=0$</TEX>, for all <TEX>${\alpha}{\in}\mathbb{C}$</TEX>). In this paper, we show that any algebraic nil derivation (possibly unbounded) on a commutative complex algebra A maps into N(A), where N(A) denotes the set of all nilpotent elements of A. As an application, we deduce that any nilpotent derivation on a commutative complex algebra A maps into N(A), Finally, we deduce two noncommutative versions of algebraic nil derivations inclusion range.

Kim, Ji Eun(Department of Mathematics, Pusan National University) ; Lim, Su Jin(Department of Mathematics, Pusan National University) ; Shon, Kwang Ho(Department of Mathematics, Pusan National University) pp.251-258 https://doi.org/10.7468/jksmeb.2013.20.4.251
초록보기
초록

Abstract

We define an <TEX>${\varepsilon}$</TEX>-regular function in dual quaternions. From the properties of <TEX>${\varepsilon}$</TEX>-regular functions, we represent the Taylor series of <TEX>${\varepsilon}$</TEX>-regular functions with values in dual quaternions.

Sohn, Sung-Ik(Department of Mathematics, Gangneung-Wonju National University) pp.259-267 https://doi.org/10.7468/jksmeb.2013.20.4.259
초록보기
초록

Abstract

We present a high-order potential flow model for the motion of hydrodynamic unstable interfaces in cylindrical geometry. The asymptotic solutions of the bubbles in the gravity-induced instability and the shock-induced instability are obtained from the high-order model. We show that the model gives significant high-order corrections for the solution of the bubble.

Kang, Yutae(Department of Mathematics, Sogang University) ; Kim, Jongsu(Department of Mathematics, Sogang University) pp.269-276 https://doi.org/10.7468/jksmeb.2013.20.4.269
초록보기
초록

Abstract

We find an explicit <TEX>$C^{\infty}$</TEX>-continuous path of Riemannian metrics <TEX>$g_t$</TEX> on the 4-d hyperbolic space <TEX>$\mathbb{H}^4$</TEX>, for <TEX>$0{\leq}t{\leq}{\varepsilon}$</TEX> for some number <TEX>${\varepsilon}$</TEX> > 0 with the following property: <TEX>$g_0$</TEX> is the hyperbolic metric on <TEX>$\mathbb{H}^4$</TEX>, the scalar curvatures of <TEX>$g_t$</TEX> are strictly decreasing in t in an open ball and <TEX>$g_t$</TEX> is isometric to the hyperbolic metric in the complement of the ball.

Rafiq, Arif(Department of Mathematics, Lahore Leads University) ; Pasha, Ayesha Inam(CIIT) ; Lee, Byung-Soo(Department of Mathematics, Kyungsung University) pp.277-286 https://doi.org/10.7468/jksmeb.2013.20.4.277
초록보기
초록

Abstract

In this paper, we suggest and analyze a family of multi-step iterative methods which do not involve the high-order differentials of the function for solving nonlinear equations using a different type of decomposition (mainly due to Noor and Noor [15]). We also discuss the convergence of the new proposed methods. Several numerical examples are given to illustrate the efficiency and the performance of the new iterative method. Our results can be considered as an improvement and refinement of the previous results.

Kim, Ju Hong(Department of Mathematics, Sungshin Women's University) pp.287-298 https://doi.org/10.7468/jksmeb.2013.20.4.287
초록보기
초록

Abstract

A standard deviation has been a starting point for a mathematical definition of risk. As a remedy for drawbacks such as subadditivity property discouraging the diversification, coherent and convex risk measures are introduced in an axiomatic approach. Choquet expectation and g-expectations, which generalize mathematical expectations, are widely used in hedging and pricing contingent claims in incomplete markets. The each risk measure or expectation give rise to its own pricing rules. In this paper we investigate relationships among dynamic risk measures, Choquet expectation and dynamic g-expectations in the framework of the continuous-time asset pricing.

한국수학교육학회지시리즈B:순수및응용수학