ISSN : 1226-0657
We study half lightlike submanifolds M of an indefinite trans-Sasakian manifold <graphic></graphic> of quasi-constant curvature subject to the condition that the 1-form θ and the vector field ζ, defined by (1.1), are identical with the 1-form θ and the vector field ζ of the indefinite trans-Sasakian structure { J, θ, ζ } of <graphic></graphic>.
Jin, D.H.;. (2014). Half lightlike submanifolds of an indefinite trans-Sasakian manifold. Bull. Korean Math. Soc., 51(4), 979-994. 10.4134/BKMS.2014.51.4.979.
Jin, D.H.;. (2014). Indefinite trans-Sasakian manifold of quasi-constant curvature with lightlike hypersurfaces. submitted in Balkan J. of Geo. and Its Appl., .
Oubina, J.A.;. (1985). New classes of almost contact metric structures. Publ. Math. Debrecen, 32, 187-193.
Cǎlin, C.;. Contributions to geometry of CR-submanifold. Thesis.
Chen, B.Y.;Yano, K.;. (1972). Hypersurfaces of a conformally flat space. Tensor (N. S.), 26, 318-322.
Duggal, K.L.;Bejancu, A.;. Lightlike Submanifolds of Semi-Riemannian Manifolds and Applications.
Duggal, K.L.;Jin, D.H.;. (1999). Half-lightlike submanifolds of codimension 2. Math. J. Toyama Univ., 22, 121-161.
Duggal, K.L.;Jin, D.H.;. Null curves and Hypersurfaces of Semi-Riemannian Manifolds.
Duggal, K.L.;Sahin, B.;. Frontiers in Mathematics;Differential geometry of lightlike submanifolds.
Jin, D.H.;. (2011). Half lightlike submanifolds of an indefinite Sasakian manifold. J. Korean Soc Math. Edu. Ser. B: Pure Appl. Math., 18(2), 173-183.