바로가기메뉴

본문 바로가기 주메뉴 바로가기

ACOMS+ 및 학술지 리포지터리 설명회

  • 한국과학기술정보연구원(KISTI) 서울분원 대회의실(별관 3층)
  • 2024년 07월 03일(수) 13:30
 

logo

  • P-ISSN1226-0657
  • E-ISSN2287-6081
  • KCI

HALF LIGHTLIKE SUBMANIFOLDS OF AN INDEFINITE TRANS-SASAKIAN MANIFOLD OF QUASI-CONSTANT CURVATURE

HALF LIGHTLIKE SUBMANIFOLDS OF AN INDEFINITE TRANS-SASAKIAN MANIFOLD OF QUASI-CONSTANT CURVATURE

한국수학교육학회지시리즈B:순수및응용수학 / Journal of the Korean Society of Mathematical Education Series B: The Pure and Applied Mathematics, (P)1226-0657; (E)2287-6081
2015, v.22 no.2, pp.113-125
https://doi.org/10.7468/jksmeb.2015.22.2.113
JIN, DAE HO (DEPARTMENT OF MATHEMATICS, DONGGUK UNIVERSITY)

Abstract

We study half lightlike submanifolds M of an indefinite trans-Sasakian manifold <graphic></graphic> of quasi-constant curvature subject to the condition that the 1-form &#x3B8; and the vector field &#x3B6;, defined by (1.1), are identical with the 1-form &#x3B8; and the vector field &#x3B6; of the indefinite trans-Sasakian structure { J, &#x3B8;, &#x3B6; } of <graphic></graphic>.

keywords
indefinite trans-Sasakian manifold, half lightlike submanifold, quasi-constant curvature

참고문헌

1.

Jin, D.H.;. (2014). Half lightlike submanifolds of an indefinite trans-Sasakian manifold. Bull. Korean Math. Soc., 51(4), 979-994. 10.4134/BKMS.2014.51.4.979.

2.

Jin, D.H.;. (2014). Indefinite trans-Sasakian manifold of quasi-constant curvature with lightlike hypersurfaces. submitted in Balkan J. of Geo. and Its Appl., .

3.

Oubina, J.A.;. (1985). New classes of almost contact metric structures. Publ. Math. Debrecen, 32, 187-193.

4.

C&#x1CE;lin, C.;. Contributions to geometry of CR-submanifold. Thesis.

5.

Chen, B.Y.;Yano, K.;. (1972). Hypersurfaces of a conformally flat space. Tensor (N. S.), 26, 318-322.

6.

Duggal, K.L.;Bejancu, A.;. Lightlike Submanifolds of Semi-Riemannian Manifolds and Applications.

7.

Duggal, K.L.;Jin, D.H.;. (1999). Half-lightlike submanifolds of codimension 2. Math. J. Toyama Univ., 22, 121-161.

8.

Duggal, K.L.;Jin, D.H.;. Null curves and Hypersurfaces of Semi-Riemannian Manifolds.

9.

Duggal, K.L.;Sahin, B.;. Frontiers in Mathematics;Differential geometry of lightlike submanifolds.

10.

Jin, D.H.;. (2011). Half lightlike submanifolds of an indefinite Sasakian manifold. J. Korean Soc Math. Edu. Ser. B: Pure Appl. Math., 18(2), 173-183.

한국수학교육학회지시리즈B:순수및응용수학