• P-ISSN1225-0163
  • E-ISSN2288-8985
  • SCOPUS, ESCI, KCI

Article Detail

Home > Article Detail
  • P-ISSN 1225-0163
  • E-ISSN 2288-8985

Oxidation behavior on the surface of titanium metal specimens at high temperatures (300~1000℃)

Analytical Science and Technology / Analytical Science and Technology, (P)1225-0163; (E)2288-8985
2009, v.22 no.6, pp.464-470



  • Downloaded
  • Viewed

Abstract

For the investigation of the oxidation behavior for titanium metal at various temperatures, titanium specimens were heated for 2 hours in the range of 300~1000 ℃, individually. And then X-ray diffraction(XRD), scanning electron microscopy (SEM)/energy dispersive spectroscopy (EDS) and attenuated total reflection-Fourier transform infrared (ATR-FTIR) spectroscopic analyses were carried out. At 300 ℃, infrared absorption bands on the surface of the titanium specimen were shown in a spectrum by the oxygen uptake of titanium metal(hexagonal). At increased temperature, not only infrared absorption bands but also X-ray diffraction peaks for the titanium oxide were grown and shifted to low wave number (㎝<SUP>−1</SUP>) and angle(°) due to the more oxygen diffusion into titanium metal. At 700 ℃, Ti₃O (hexagonal phase) was identified by X-ray diffractometer. TiO₂ (rutile, tetragonal phase) layer was produced on the surface of the specimen below 1 ㎛ in thickness at 600 ℃, and grown about 2 ㎛ at 700 ℃ and with 110 ㎛ in thickness at 1000 ℃. Above 900 ℃, (110) plane of the crystal on the surface of rutile-TiO₂ layer was grown.

keywords
titanium, oxidation, x-ray diffraction, SEM/EDS, ATR-FTIR spectroscopy


Reference

1

1. Z. G. Wang, X. T. Zu, J. Lian, X. Q. Huang, L. Wang,Y. Z. Liu and L. M. Wang, J. Alloy. Comp., 384, 93-97(2004).

2

2. T. K. Kim, B. S. Choi, Y. H. Jeong, D. J. Lee and M. H. Chang, J. Nucl. Mater., 301, 81-89(2002).

3

3. Z. Xiaotao, W. Zhiguo, F. Xiangdong, A. Yongzhong, L. Libin, H. Xingquan and L. Yanling, Surf. Coat. Technol., 140, 161-165(2001).

4

4. Z. Xiaotao, F. Xiangdong, W. Zhiguo, Z. Guangting, L. Libin, L. Yanling and H. Xingquan, Surf. Coat. Technol., 148, 216-220(2001).

5

5. E. Rolinski, G. Sharp, D. F. Cowgill and D. J. Peterman, J. Nucl. Mater., 252, 200-208(1998).

6

6. J. C. Williams, Mat. Sci. Eng., A263, 107-111(1999).

7

7. H. Güleryüz and H. Çimenog ˘ lu,Biomaterials, 25, 3325-3333(2004).

8

8. H. Ahn, D. Lee, K. M. Lee, K. Lee, D. Baek and S. W. Park, Surface & Coatings Technology, 202, 5784- 5789(2008).

9

9. R. Padma, K. Ramkumar and M. Satyam, J. Mat. Sci., 23, 1591-1597(1988).

10

10. Y. S. Park, Y. K. Ha, S. H. Han, K. Y. Jee and W. H. Kim, J. Nucl. Mater., 372, 59-65(2008).

11

11. S. Van Gils, P. Mast, E. Stijns and H. Terryn, Surf. Coat. Technol., 185, 303-310(2004).

12

12. C. C. Ting, S. Y. Chen and D. M. Liu, Thin Solid Films, 402, 290-295(2002).

상단으로 이동

Analytical Science and Technology