- P-ISSN 1225-0163
- E-ISSN 2288-8985
이 연구에서는 2010년 기준의 지정악취물질에 해당하는 유기지방산과 함께 기존 VOC류 지정 악취물질들을 포괄적으로 분석할 수 있는 흡착관-열탈착 분석기법을 연구하였다. 이러한 분석기법의 검량특성을 평가하기 위해, Tenax TA를 충전한 시료흡착관을 준비하였다. 그리고 여기에 유기지방산 4종(propionic acid (PA), butyric acid (BA), isovaleric acid (IA), valeric acid (VA))을 위시한 13 가지 조사성분을 함유한 작업용 표준시료를 주입하고 저온농축기법으로 분석하였다. 유기지방산의 분석감도를 절대량(ng) 및 농도기준 (ppb)의 검출한계로 비교해 보았을 때, 다른 일반적인 VOC 악취성분들에 비해 약 1.5~2배 낮게 나타나는 것을 확인하였다(PA: 0.24 ng (0.16 ppb), BA: 0.19 ng (0.11 ppb), IA: 0.15 ng (0.07 ppb), and VA: 0.28 ng (0.13 ppb)). 분석의 재현성을 RSE로 표시할 경우, 대부분의 성분들이 5% 이내로 안정적으로 나타난 반면, BA (8.02%), IA (14.0%), VA (5.08%)는 5%가 넘을 정도로 낮은 재현성을 보였다. 이러한 결과를 내부표준물질을 이용한 검량으로 비교하였을 때, 대다수 성분의 재현성이 향상되는 양상을 보였다(PA: 1.1±0.4%, BA: 10±0.46, IA; 12±0.3%, VA: 4±0.1%). 이 연구의 결과, 악취공정시험법에서 유기지방산의 분석방법으로 권장한 알칼리 흡수법에 대비하여 흡착튜브를 이용한 시료의 채취가 보다 유용한 대체방법으로 활용 가능한 것으로 나타났다.
In this study, analytical methodology for several organic fatty acids (OFA: propionic acid (PA), butyric acid (BA), isovaleric acid (IA), and valeric acid (VA)) designated as new offensive odorants in Korea (as of year 2010) was investigated along with some odorous VOCs (styrene, toluene, xylene, methyl ethyl ketone, methyl isobutyl ketone, butyl acetate, and isobutyl alcohol). For this purpose, working standards (WS) containing all of these 13 compounds were loaded into adsorption tube filled with Tenax TA, and analyzed by gas chromatography (GC) system thermal desorber interfaced with. The analytical sensitivities of organic fatty acids expressed in terms of detection limit (both in absolute mass (ng) and concentration (ppb)) were lower by 1.5~2 times than other compounds (PA: 0.24 ng (0.16 ppb), BA: 0.19 ng (0.11 ppb), IA: 0.15 ng (0.07 ppb), and VA: 0.28 ng (0.13 ppb)). The precision of BA, IA, and VA, if assessed in terms of relative standard error (RSE), maintained above 5%, while the precison of other compounds were below 5%. The reproducibility of analysis improved with the aid of internal standard calibration (PA: 1.1±0.4%, BA: 10±0.46%, IA: 12±0.3%, and VA: 4±0.1%), respectively. The results of this study showed that organic fatty acid can be analyzed using adsorption tube and thermal desorber in a more reliable way to replace alkali absorption method introduced in the odor prevention law of the Korea Ministry of Environment (KMOE)
1. 환경부, 악취방지법 (2005).
2. S.-I. Yun and Y. Ohta, Removal of volatile fatty acids with immobilized rhodococcus sp. B261, Bioresource Technology, 96, 41-46(2005).
3. L. Otten, M.T. Afzal, and D.M. Mainville, Biofiltration of odours: laboratory studies using butyric acid, Advances in Environmental Research, 8, 397-409 (2004).
4. Nagata, Y., 臭度及び嗅値について, 空氣淸淨, 41(2), 17-25(2003).
5. A. Bories, J.-M. Guillot, Y. Sire, M. Couderc, S.-A. Lemaire, V. Kreim and J.-C. Roux, Prevention of volatile fatty acids production and limitation of odours from winery wastewaters by denitrification, Water Research, 41, 2987-2995(2007).
6. K.Y. Kono, ‘Malodor Preventive Low: Editorial Supervision for Special Pollution Section of Air Preservation Department if the Ministry of Environment in Japan’. 13-35, Gyousei Inc., 1993.
7. 김종보, 김태현, 김태화, 주도원, 임문순, On-line 열탈착기와 GC/FID를 이용한 환경대기 중 유기산 성분 (프로피온산, n-뷰티르산, n-발레르산, i-발레르산)들의 분석방법 연구, 한국냄새환경학회지, 7(4), 231- 237(2008).
8. G. Manni and F. Caron, Calibration and determination of volatile fatty acids in waste leachates by gas chromatography, J. Chromatography A, 690, 237-242(1995).
9. C. Ibáñez, Analysis of total propionic acid in feed using headspace solid-phase microextraction and gas chromatography, J. Chromatography A, 1017, 161- 166(2003).
10. A. Keshav, K.L. Wasewar, and S. Chand, Recovery of propionic acid from and aqueous stream by reactive extraction: effect of diluents, Desalination, 244, 12-23 (2009).
11. M. Abalos and J.M. Bayona, Application of gas chromatography coupled to chemical ionization mass spectrometry following headspace solid-phase microextraction for the determination of free volatile fatty acids in aqueous samples, J. Chromatography A, 891, 287- 294(2000).
12. L. Mårtensson, M. Magnusson, Y. Shen, and J. Å. Jönsson, Air concentration of volatile organic acids in confined animal buildings-determination with ion chromatography, Agriculture, Ecosystem and Environment, 75, 101-108(1999).
13. I. G. Zenkevich and E. D. Makarov, Chromatographic quantitation at losses of analyte during sample preparation. Application of the modified method of double internal standard, J. Chromatography A, 1150, 117-123(2007).
14. K. Wróbel, K. Wróbel, G.Cruz-Jiménez, and F. Angulo- Remero, Application of internal standard for micro extraction-spectrophotometric determination of copper in serum and in natural waters, Analytica Chimica Acta, 387, 217-224(1999).
15. W.-T. Chang, D.-L. Lin, and R. H. Liu, Isotopic analogs as internal standards for quantitative analyses by GC/MS-evaluation of cross-contribution to ions designated for the analyte and the isotopic internal standard, Forensic Science International, 121, 174-182(2001).
16. P. Araujo, F. Couillard, E. Leirnes, K. Ask, A. Bøkevoll and L. Frøyland, Experimental design consideration sin quantification experiments by using the internal standard technique: Cholesterol determination by gas chromatography as a case study, J. Chromatography A, 1121, 99-105(2006).