- P-ISSN 1225-0163
- E-ISSN 2288-8985
국내에서는 건물의 화재 방지를 위하여 인증된 내화뿜칠재를 사용하도록 규정되어 있다. 하지만일부 현장에서는 성능이 없는 흡음뿜칠재을 사용함으로 해서 내화구조 부실시공의 원인이 되고 있다. 따라서 성능이 인정된 내화 뿜칠재와 일반 흡음뿜칠재를 현장에서 분석하여 적정 시공 여부를 확인하는 방법을 제시하고자 한다. 이에 본 연구에서는 성능이 인정된 내화 뿜칠재 9종과 정상 내화 뿜칠재 및 내화성능이 없는 일반 흡음뿜칠재 3종을 비교 측정하였다. 측정하기 전에 분석시료를 대상으로 mill을 사용하여 powder로 전처리를 하였으며 현장에 접근성이 용이한 NIR을 사용하였다. 측정은 NIR중에서 FTNIR을사용하였으며, 측정 모듈은 적분구(integrating sphere)를 사용하여 측정하였다. 이 측정된 흡수 스펙트럼은 통계 처리 방법 중에서 주성분 분석법인 PCA 기법으로 분석함으로 해서 정상과 비정상 내화뿜칠재를 판별이 가능 함을 확인하였다.
To protect the steel structure in a high story buildings from fire, the sprayed fire-resistive materials are applied during the construction. Current standard methods to check the quality of sprayed fire-resistive materials are real fire test in lab, which take a long time (several weeks) and expensive. In this study, a simple analytical method to check the quality of sprayed fire-resistive materials is developed using Near Infrared Spectroscopy (NIR). Total 9 kinds of sprayed fire-resisted materials and 3 kinds of normal sprayed material sets were used for the analysis. Each set of materials was 50 to 100 samples. Samples are grinded and make a fine powder. The spectral data acquisition was carried out using FT-NIR spectrometer with a integrating sphere. NIR methods successfully identify the sprayed fire resistive materials by a principle component analysis (PCA)after a vector normalization (SNV) pretreatment.
1. F. T. Walder and M. J. Smith, Quantitative Aspects of Near-Infrared Fourier Transform Raman Spectroscopy, Spectrochim Acta, 1202-1216(1991).
2. Williams, Phil and Norris, Karl, Near-Infrared Technology in the Agricultural and Food Industry, American Association of Cereal Chemists, Inc., Minnesota, U.S.A., 201(1987).
3. J. W. Hall and A. Pollard, Near-Infrared Spectrophotometry, a New Dimension in Clinical Chemistry, Clim Chem., 1623-1631(1992).
4. J. D. Kirsch and J. K. Drennen, Determinatin of Film Coated Tablet Parameters by Near-infrered Spectroscopy. J. Pharm. Biomed. Anal., 1273-1281(1995).
5. L. Weyer, Near Infrered Spectroscopy of Organic Substances, Appl. Spectrosc Rev., 1-43(1985).
6. J. A. Panford, P. C. Williams and J. M. deMan, Analysis of Oilseeds for Protein, Oil, Fiber and Moisture by Near-Infrared Reflectance Spectroscopy, JAOCS, 65, 1627(1988).
7. W. J. Jasper and E. T. Kovacs, Using Neutral Networks and NIR Spectrophotometry to Identify Fibers, Textile Res. J., 64, 444(1994).
8. Y. B. Kim, Studies on the Chemical Analysis in Raw Meat and Meat Product by Near-Infrared Spectroscopy, Seoul Nation University, Ph. D. Thesis, 1996.
9. V. Venkatasubramanian, R. Rengaswamy, S. N. Kavuri and K. Yin, A Review of Process Fault Detection and Diagnosis Part III, Process History Based Methods., Comput. Chem., 327-346(2003).
10. G. Lee, C. Han and E. S. Yoon, Multiple-Fault Diagnosis of the Tennessee Eastman Process Based on System Decomposition and Dynamic PLS Ind., Chem. Res., 8037-8048(2004).
11. H. Y. Cen and Y. He, Theory and application of near infrared reflectance spectroscopy, Food Sci. Technol., 18, 72-83(2007).
12. Yang Liu, Alian Wang, John J. Freeman, Raman, Mir, and Nir Spectroscopic Study of Calcium Sulfates: GYPSum, Bassanite, And Anhydrite. 40th Lunar and Planetary Science Conference, 2128(2009).
13. L. H. Chiang, E. L. Russell and R. D. Braatz, Fault Detection and Diagnosis in Industrial Systems, Springer, London, 2001.