- P-ISSN 1225-0163
- E-ISSN 2288-8985
셀레늄은 인체의 필수영양소로써 환경에서 또한 많은 관심을 가지고 있는 원소이다. 셀레늄은 자연수에서 주로 +4가의 selenite (SeO_3^(2−))와 +6가의 selenate (SeO_4^(2−))로 용해되어 있는데, 이들의 독성 및 화학적 성질은 매우 다르다. 따라서 자연수에서 셀레늄의 거동을 이해하기 위해서는 이들 두 화학종을 분리하는 것이 필요하다. 기존에 알려진 알루미나 충전 컬럼과 이온크로마토그래피를 이용한 selenite와 selenate 의 분리방법들은 silicate 때문에 자연수에 직접 적용하기가 곤란하였다. 따라서 마그네타이트가 용액의 pH 에 따라 selenite와 selenate를 흡착하는 정도가 다르므로 마그네타이트가 충전된 컬럼을 이용하여 이들의분리를 수행한 결과, 성공적으로 분리할 수 있었다. 아울러 자연수에 존재하는 다른 음이온들 중에서 silicate 는 selenite의 흡착을 방해하므로 silicate의 농도를 고려하여 충분한 양의 마그네타이트를 사용하여야만 한다.
Selenium is one of the interesting elements in human body, because it's important micro-nutrient for human health as the essential biological tissue in protein. Selenite (SeO_3^(2−)) and selenate (SeO_4^(2−)) are the dominant dissolved selenium species in natural water, and their toxicity and chemical properties are very different each other. Thus it is necessary to separate the two selenium species for understanding selenium behaviors in natural waters. Some reported methods, using an alumina-filled column and an ion chromatography, to separate the selenite and selenite may be difficult to directly apply to the natural water. Therefore magnetite selectively adsorbs selenite and selenate according to pH of solution, the separation of selenite and selenate using a magnetite-filled column was successfully obtained at weak alkali solutions. Moreover, the influence of dissolved anions in natural water at the selenite sorption onto magnetite was also investigated because they could hinder the sorption of selenite onto magnetite. In other to directly apply to the natural water, reactive sites of magnetite should be considered because dissolved silicate in natural water can hinder the adsorption of selenite onto magnetite.
1. V. Chand and S. Prasad, J. Hazard. Mater., 165(1-3), 780-788 (2009).
2. L. Schomburg, U. Schweizer and J. Kohrle, Cell. Mol. Life Sci. 61, 1998-1995 (2004).
3. M. E. Monero, C. Perez-Conde and C. Camara, J. Anal. Atom. Spectrom., 15, 681-686 (2000).
4. P. C. Hernandez, J. F. Tyson, P. C. Uden and D. Yates, J. Anal. Atom. Spectrom. 22, 298-304 (2007)
5. S. Li and N. Deng, Anal Bioanal Chem, 374, 1341-1345 (2002).
6. C. Xiong, M. He and B. Hu, Talanta, 76, 772-779 (2008).
7. C. Y. Lu, X. P. Yan, Z. P. Zhang, Z. P. Wang and L. W. Liu, J. Anal. At. Spectrom., 19, 277-281 (2004).
8. C. H. Yu, Q. T. Cai, Z. X. Guo, Z. G. Yang and S. B. Khoo, Spectrochim. Acta, 58B, 1335-1349 (2003).
9. C. Z. Huang, B. Hu and Z. C. Jiang, Spectrochim. Acta 62B, 454 (2007).
10. K. PyrzynÂska, P. Drzewicz and M. Trojanowicz, Anal. Chimica Acta, 363, 141-146 (1998).
11. T. Missana, U. Alonso, A. C. Scheinost, N. Granizo and M. Garcia-gutierrez, Geochemi. et Cosmochimica Acta, 73, 6205-6217 (2009).
12. N. Jordan, C. Lomenech, N. Marmier, E. Giffaut and J. J. Ehrhardt, J. Coll. Inter. Sci., 329, 17-23 (2009).
13. M. Martinex, J. Gimenez, J. De Pablo, M. Rovira and L. Duro, Applied Surface Science, 252, 3767-3773 (2006).
14. A. C. Scheinost, R. Kirsch, D. Banerjee, A. Fernandez- Martinez, H. Zaenker, H. Funke and L. Charlet, J. Contam. Hydrol., 102, 228-245 (2008).
15. R. L. A. Loyo, S. I. Nikitenko, A. C. Scheinost and M. Simonoff, Environ. Sci. Technol., 42, 2451-2456 (2008).
16. M. Rovira, J. Gimenex, M. Martinex, X. M. Llado, J. Pablo, V. Marti and L. Duro, J. Hazardous Materials, 150, 279-284 (2008).
17. S. S. Kim, M. H. Baik, J. W. Choi, H. S. Shin and J. I. Yun, J. Radioanal. Nucl. Chem., 286, 91-97 (2010).
18. N. Miekeley, R. C. Pereira, E. A. Casartelli, Ana C. Almedia and M. F. B. Carvalho, Spectrochimica Acta Part B, 60, 633-641 (2005).