Article Detail

Home > Article Detail
  • P-ISSN 1225-0163
  • E-ISSN 2288-8985

Selective determination of mercury (II) ion in aqueous solution by chemiluminescence method

Analytical Science and Technology / Analytical Science and Technology, (P)1225-0163; (E)2288-8985
2011, v.24 no.4, pp.243-248
https://doi.org/10.5806/AST.2011.24.4.243





  • Downloaded
  • Viewed

Abstract

A selective determination method of mercury (II) ion in aqueous solution by luminol-based chemiluminescence system (luminol CL system) has been developed. Determination of metal ions such as copper (II), iron (III), chromium (III) ion in solution by the luminol CL system using its catalytic role in the reaction of luminol and hydrogen peroxide has been reported by several groups. In this study, the catalytic activity of mercury (II) ion in the reaction of luminol and hydrogen peroxide was observed by the enhanced CL intensity of the luminol CL system. Based on this phenomenon, experimental conditions of the luminol CL system were investigated and optimized to determine mercury (II) ion in aqueous solution. While mercury (II) ion in mixed sample solution containing mercury (I) and (II) ions highly enhanced the CL intensity of the luminol CL system,the mercury (I) ion could not enhanced the CL intensity. Thus selective determination of the mercury (II) ions in a mixture containing mercury (I) and (II) ions could be achieved. Each concentration of mercury (I) and (II) ions in aqueous solution can be obtained from the results of the CL method that give the concentration of only mercury (II) ion and the inductively coupled plasma (ICP) method that give the total concentration of mercury ions. On the optimized conditions, the calibration curve of mercury (II) ion was linear over the range from 1.25×10^(−5) to 2.50×10^(−3) M with correlation coefficient of 0.991. The detection limit of mercury (II) ion in aqueous solution was calculated to be 1.25×10^(−7) M.

keywords
mercury (II) ion, chemiluminescence, luminol, metal ion determination


Reference

1

1. B. H. Sipple and J. Swartout, ‘Mercury study report to Congress’, Vol 5, Environmental protection agency, Washington D.C., 1997.

2

2. C. Baird and M. Cann, ‘Environmental chemistry’, 3rd Ed., W. H. Freeman & company, New York, 2004.

3

3. M. Gochfeld, Ecotox. Environ. Safety, 56(1), 174-179(2003).

4

4. C. Anthony, Water Air Soil Poll., 98(2), 241-254 (1997).

5

5. Y. Wu, S. Wang, D. Streets, J. Zhao, M. Chen and J. Jiang, Environ. Sci. Technol., 40, 5312-5318 (2006).

6

6. D. Streets, J. Hao, Y. Wu, J. Jiang, M. Chan, H. Tian and X. Feng, Atmos. Environ., 39, 7789-7806 (2005).

7

7. M. S. Landis, G. J. Keeler, K. I. Al-Wali and R. K. Stevens, Atmos. Environ., 38, 613-622 (2004).

8

8. WHO-IPCS. Environmental health criteria. http://www. inchem.org/documents/ehc/ehc/ehc101.htm#PartNumber:10

9

9. P. B. Tchounwou, W. K. Ayensu, N. Ninashvili and D. Sutton, Environ. Toxicol., 18(3), 149-175 (2003).

10

10. H. A. Young, D. A. Geier and M. R. Geier, J. Neurol. Sci., 271(1), 110-118 (2008).

11

11. G. A. Westpha, S. Asgari, T. G. Schulz, J. Bunger, M. Muller and E. Hallier, Arch. Toxicol., 77(1), 50-55 (2003).

12

12. A. Cebulska-Wasilewska, A. Panek, Z. Zabinski and P. Moszczynski, Mutat. Res., 586, 102-114 (2005).

13

13. N. Strafford and P. F. Wyatt, Analyst, 61, 528-535 (1936).

14

14. H. Smith, Anal. Chem., 35, 635-636 (1963).

15

15. J. D. Winefordner and R. A. Staab, Anal. Chem., 36(7), 1367-1369 (1964).

16

16. K. Tanabe, K. Chiba, H. Haraguchi and K. Fuwa, Anal. Chem., 53, 1450-1453 (1981).

17

17. J. Tolgyessy and E. H. Klehr, ‘Nuclear Environmental Chemical Analysis’, Wiley, New York, 1987.

18

18. A. Stroh, U. Voellkopf, E. R. Denoyer, J. Anal. At. Spectrom., 7, 1201-1206 (1992).

19

19. J. D. Winefordner and T. J. Vickers, Anal. Chem., 36, 161-168 (1964).

20

20. B. Aizpun, M. L. Fernandez, E. Blanco and A. Sanz- Medel, J. Anal. At. Spectrom., 9(11), 1279-1284 (1994).

21

21. J. Qvarnstrom, Q. Tu, W. Frech and C. Ludke, Analyst, 125(6), 1193-1197 (2000).

22

22. H. Li, Y. Zhang and X. Wang, Microchim. Acta., 160, 119-123 (2008).

23

23. M. Yuan and Y. Li, Org. Lett., 9(12), 2313-2316 (2007).

24

24. I. P. A. Morais, I. V. Toth and O. S. S Gangel, Talanta, 66(2), 341-347 (2005).

25

25. A. M. Powe, S. Das, M. Lowry, B. El-Zahab, S. O. Fakayode, M. L. Geng, G. A. baker, L. Wang, M. E. McCarroll, G. Patonay, M. Li, M. Aljarrah, S. Neal and I. M. Warner, Anal. Chem., 82(12), 4865-4894 (2010).

26

26. C. Xiao, D. A. Palmer, D. J. Wesolowski, S. B. Lovitz and D. W. King, Anal. Chem., 74(9), 2210-2216 (2002).

27

27. J. C. Miller and J. N. Miller, ‘Statistics for Analytical Chemistry’, 2nd Ed., Ellis Horwood, Chichester, England, 1988.

28

28. Z. Zhang, S. Zhang and X. Zhang, Analytica. Chimica. Acta., 541(1-2), 37-47 (2005).

29

29. J. P. Auses, S. L. Cook and J. T. Maloy, Anal. Chem., 47, 244-249 (1975).

30

30. X. F. Wang and L. Andrews, Inorg. Chemi., 44(1), 108- 113 (2005).

상단으로 이동

Analytical Science and Technology