Article Detail

Home > Article Detail
  • P-ISSN 1225-0163
  • E-ISSN 2288-8985

Separation of selenite and selenate using magnetite

Analytical Science and Technology / Analytical Science and Technology, (P)1225-0163; (E)2288-8985
2011, v.24 no.4, pp.298-303
https://doi.org/10.5806/AST.2011.24.4.298




  • Downloaded
  • Viewed

Abstract

Selenium is one of the interesting elements in human body, because it's important micro-nutrient for human health as the essential biological tissue in protein. Selenite (SeO_3^(2−)) and selenate (SeO_4^(2−)) are the dominant dissolved selenium species in natural water, and their toxicity and chemical properties are very different each other. Thus it is necessary to separate the two selenium species for understanding selenium behaviors in natural waters. Some reported methods, using an alumina-filled column and an ion chromatography, to separate the selenite and selenite may be difficult to directly apply to the natural water. Therefore magnetite selectively adsorbs selenite and selenate according to pH of solution, the separation of selenite and selenate using a magnetite-filled column was successfully obtained at weak alkali solutions. Moreover, the influence of dissolved anions in natural water at the selenite sorption onto magnetite was also investigated because they could hinder the sorption of selenite onto magnetite. In other to directly apply to the natural water, reactive sites of magnetite should be considered because dissolved silicate in natural water can hinder the adsorption of selenite onto magnetite.

keywords
separation, selenite, selenate, magnetite, adsorption


Reference

1

1. V. Chand and S. Prasad, J. Hazard. Mater., 165(1-3), 780-788 (2009).

2

2. L. Schomburg, U. Schweizer and J. Kohrle, Cell. Mol. Life Sci. 61, 1998-1995 (2004).

3

3. M. E. Monero, C. Perez-Conde and C. Camara, J. Anal. Atom. Spectrom., 15, 681-686 (2000).

4

4. P. C. Hernandez, J. F. Tyson, P. C. Uden and D. Yates, J. Anal. Atom. Spectrom. 22, 298-304 (2007)

5

5. S. Li and N. Deng, Anal Bioanal Chem, 374, 1341-1345 (2002).

6

6. C. Xiong, M. He and B. Hu, Talanta, 76, 772-779 (2008).

7

7. C. Y. Lu, X. P. Yan, Z. P. Zhang, Z. P. Wang and L. W. Liu, J. Anal. At. Spectrom., 19, 277-281 (2004).

8

8. C. H. Yu, Q. T. Cai, Z. X. Guo, Z. G. Yang and S. B. Khoo, Spectrochim. Acta, 58B, 1335-1349 (2003).

9

9. C. Z. Huang, B. Hu and Z. C. Jiang, Spectrochim. Acta 62B, 454 (2007).

10

10. K. PyrzynÂska, P. Drzewicz and M. Trojanowicz, Anal. Chimica Acta, 363, 141-146 (1998).

11

11. T. Missana, U. Alonso, A. C. Scheinost, N. Granizo and M. Garcia-gutierrez, Geochemi. et Cosmochimica Acta, 73, 6205-6217 (2009).

12

12. N. Jordan, C. Lomenech, N. Marmier, E. Giffaut and J. J. Ehrhardt, J. Coll. Inter. Sci., 329, 17-23 (2009).

13

13. M. Martinex, J. Gimenez, J. De Pablo, M. Rovira and L. Duro, Applied Surface Science, 252, 3767-3773 (2006).

14

14. A. C. Scheinost, R. Kirsch, D. Banerjee, A. Fernandez- Martinez, H. Zaenker, H. Funke and L. Charlet, J. Contam. Hydrol., 102, 228-245 (2008).

15

15. R. L. A. Loyo, S. I. Nikitenko, A. C. Scheinost and M. Simonoff, Environ. Sci. Technol., 42, 2451-2456 (2008).

16

16. M. Rovira, J. Gimenex, M. Martinex, X. M. Llado, J. Pablo, V. Marti and L. Duro, J. Hazardous Materials, 150, 279-284 (2008).

17

17. S. S. Kim, M. H. Baik, J. W. Choi, H. S. Shin and J. I. Yun, J. Radioanal. Nucl. Chem., 286, 91-97 (2010).

18

18. N. Miekeley, R. C. Pereira, E. A. Casartelli, Ana C. Almedia and M. F. B. Carvalho, Spectrochimica Acta Part B, 60, 633-641 (2005).

상단으로 이동

Analytical Science and Technology