ACOMS+ 및 학술지 리포지터리 설명회

  • 한국과학기술정보연구원(KISTI) 서울분원 대회의실(별관 3층)
  • 2024년 07월 03일(수) 13:30
 

  • P-ISSN1225-0163
  • E-ISSN2288-8985
  • SCOPUS, ESCI, KCI

논문 상세

Home > 논문 상세
  • P-ISSN 1225-0163
  • E-ISSN 2288-8985

논문 상세

    업종별 산업폐수 중 프탈산에스테르와 디에틸헥실아디페이트의 잔류수준

    Residue levels of phthalic acid esters (PAEs) and diethylhexyl adipate (DEHA) in various industrial wastewaters

    분석과학 / Analytical Science and Technology, (P)1225-0163; (E)2288-8985
    2016, v.29 no.2, pp.57-64
    https://doi.org/10.5806/AST.2016.29.2.57
    김혜성 (국립환경과학원 환경측정분석센터)
    박상아 (국립환경과학원)
    이혜리 (국립환경과학원 금강물환경연구소)
    이진선 (화학물질안전원 사고예방심사과)
    이수영 (국립환경과학원 환경측정분석센터)
    김재훈 (국립환경과학원 물환경공학연구과)
    임종권 (국립환경과학원 물환경공학연구과)
    최종우 (국립환경과학원 환경측정분석센터)
    이원석 (국립환경연구원)
    • 다운로드 수
    • 조회수

    초록

    본 연구에서는 플라스틱의 가소제로 널리 사용되고 있는 프탈산에스테르(DMP, DEP, DBP, BBP,DEHP) 5종과 디에틸헥실아디페이트(DEHA)의 수질 중 분석법을 확립하고, 41개 지점의 산업폐수를 분석하였다. 검정곡선은 분석대상성분 모두 결정계수 0.98이상으로 수질오염공정시험기준을 만족하는 직선성을 나타내었으며, 방법검출한계(MDL)는 프탈산에스테르가 0.4~0.7 μg/L, 디에틸헥실아디페이트가 0.6 μg/L를 수준이었다. 그리고 회수율은 77.0~92.3%였으며, 상대표준편차는 5.8~10.5% 범위였다. 41개 지점의 산업폐수 중 유입수 45점과 방류수 40점을 분석한 결과, 유입수에서 DMP (n=5), DEP (n=2), DBP (n=1), BBP (n=2), DEHA (n=3)의 검출율은 2.2~11.1%였다. DEHP는 유입수 (n=16)에서 35.6 %, 방류수(n=4)에서 10.0%을 나타내 92~100%의 높은 제거효율을 보였다. 산업폐수 업종별 유입수 중 최고 잔류수준은 플라스틱제품제조업 137.4 μg/L (DEHP), 기타화학제품 제조업 12.5 μg/L(DEHA), 전기업 14.0 μg/ L(DEP)이었다. 방류수 중 최고농도는 기초화학물질 제조업 2.1 μg/L(DEHP)이었다. 전 지점에서의 DEHP 는 수질오염물질의 배출허용기준(특례지역 800 μg/L)을 초과하지 않았다. 따라서 인근 하천에 흐르는 산업폐수 중 프탈산에스테르(Phthalic Acid Esters)와 디에틸헥실아디페이트가 수생태계환경에 미치는 영향이 크지 않을 것이다.

    keywords
    phthalic acid esters, industrial wastewater, influent, effluent

    Abstract

    Many phthalic acid esters (PAEs), including DMP, DEP, DBP, BBP, and DEHP, as well as DEHA are widely used as plasticizers in plastics. An analytical method was developed and used to analyze these compounds at 41 industrial facilities. The coefficient of determination (R2) for each constructed curve was higher than 0.98. The method detection limit (MDL) values were 0.4–0.7 μg/L for PAEs and 0.6 μg/L for DEHA. In addition, the recovery rate was shown to be 77.0–92.3%, while the relative standard deviation was shown to be in the range of 5.8-10.5%. DMP (n = 3), DEP (n = 2), DBP (n = 2), BBP (n = 2), and DEHA (n = 3) were detected in the range of 2.2-11.1% in the influent. DEHP was a predominant compound and was detected at > MDL in both the influent (n = 16, 35.6%) and the effluent (n = 4, 10.0%) at a high removal efficiency (92–100%). The highest levels of residue in industrial wastewater influent were 137.4 μg/L of DEHP at plastic products manufacturing facility, 12.5 μg/L of DEHA at a chemical manufacturing facility, and 14.0 μg/L of DEP at an electronics facility. The highest concentration of effluent was 12.5 μg/L of DEHP at a chemical manufacturing facility, which indicated that the effluent was below the allowable concentration (800 μg/L). Therefore, the levels of PAEs and DEHA that are discharged into nearby streams could not influence the health of the ecosystem.

    keywords
    phthalic acid esters, industrial wastewater, influent, effluent


    참고문헌

    1

    1. Pthalate Riskprofile, Korea food& Drug administration, 2012.

    2

    2. L. S. Sheldon and R. A. Hites, Environ Sci Technol., 12, 1188-1194 (1978).

    3

    3. D. T. Williams, J. Agric. Food. Chem., 21, 1128-1129(1973).

    4

    4. M. Ema, R. Kurosaki, H. Amano and Y. Orgawa, Arch. Environ. Contam. Toxicol., 28, 223-228 (1995).

    5

    5. EPA Standard and regulation, http://water.epa.gov/drink/contaminants/basicinformation/di_2-ethylhexyl_phthalate. cfm, Assessed 6 Jan 2016.

    6

    6. EPA Standard and regulation, http://water.epa.gov/drink/contaminants/basicinformation/di_2-ethylhexyl_adipate. cfm, Assessed 6 Jan 2016.

    7

    7. Guidelines for drinking-water quality, http://www.who. int/water_sanitation_health/dwq/gdwq3_contents.pdf, Assessed 2004.

    8

    8. Environmental policy, https://www.env.go.jp/water/impure/item.html, Assessed 7 Apr 2015.

    9

    9. Ministry of Environment Notification No. 629-34(2015. 12. 22), Republic of Korea.

    10

    10. P. Fauser, J. Vikelsoe, P. B. Sorensen and L. Carlsen, Water Res., 37, 1288-1295 (2003).

    11

    11. H. Fromme, T. Kucher, T. Otto, K. Pilz, J. Muller and A. Wenzel, Water Res., 36, 1429-1438 (2002).

    12

    12. D. Gao, Z. Li, Z. Wen and N. Ren, Chemosphere, 95, 24-32 (2014).

    13

    13. J. H. Shin, Y. D. Jung and Y. J. Lee, Korean Geoenviron. Soc., 9(7), 5-11 (2008).

    14

    14. S. W. Myung, Y. J. Chang, H. K. Min and M. S. Kim, Anal. Sci. Technol., 13(5), 616-623 (2000).

    15

    15. Ministry of Environment Notification No. 2015-238(2015.12.28), Republic of Korea.

    16

    16. EPA-Method, http://www.caslab.com/EPA-Methods/PDF/606, Assessed 7 Apr 2015.

    17

    17. A. F. Noti and K. GROB, Anal. Chim. Acta, 555, 238(2006).

    18

    18. J. S. Han, S. H. Choe, J. I. Kim, E. J. Yoo, Y. R. Kim and B. K. Kim, ‘Environmental examination and inspection QA/QC handbook’, 2nd Ed, p13-36, National Institute of Environmental Reserch, 2011.

    상단으로 이동

    분석과학