Article Detail

Home > Article Detail
  • P-ISSN 1225-0163
  • E-ISSN 2288-8985

Analysis of fatty acid methyl ester in bio-liquid by hollow fiber-liquid phase microextraction

Analytical Science and Technology / Analytical Science and Technology, (P)1225-0163; (E)2288-8985
2017, v.30 no.4, pp.174-181
https://doi.org/10.5806/AST.2017.30.4.174



  • Downloaded
  • Viewed

Abstract

Bio-liquid is a liquid by-product of the hydrothermal carbonization (HTC) reaction, converting wet biomass into solid hydrochar, bio-liquid, and bio-gas. Since bio-liquid contains various compounds, it requires efficient sampling method to extract the target compounds from bio-liquid. In this research, fatty acid methyl ester (FAME) in bio-liquid was extracted based on hollow fiber supported liquid phase microextraction (HFLPME) and determined by Gas Chromatography-Flame Ionization Detector (GC-FID) and Gas Chromatography/ Mass Spectrometry (GC/MS). The well-known major components of biodiesel, including methyl myristate, palmitate, methyl palmitoleate, methyl stearate, methyl oleate, and methyl linoleate had been selected as standard materials for FAME analysis using HF-LPME. Physicochemical properties of bio-liquid was measured that the acidity was 3.30 (± 0.01) and the moisture content was 100.84 (± 3.02)%. The optimization of HF-LPME method had been investigated by varying the experimental parameters such as extraction solvent, extraction time, stirring speed, and the length of HF at the fixed concentration of NaCl salt. As a result, optimal conditions of HF-LPME for FAMEs were; n-octanol for extraction solvent, 30 min for extraction time, 1200 rpm for stirring speed, 20 mm for the HF length, and 0.5 w/v% for the concentration of NaCl. Validation of HF-LPME was performed with limit of detection (LOD), limit of quantitation (LOQ), dynamic range, reproducibility, and recovery. The results obtained from this study indicated that HF-LPME was suitable for the preconcentration method and the quantitative analysis to characterize FAMEs in bio-liquid generated from food waste via HTC reaction.

keywords
Bio-liquid, Hydrothermal carbonization, Fatty acid methyl ester, Hollow fiber-liquid phase microextraction, GC/MS


Reference

1

1. S. M. Heilmann, H. T. Davis, L. R. Jader, P. A. Lefebvre, M. J. Sadowsky, F. J. Schendel, M. G. Von Keitz, and K. J. Valentas, Biomass Bioenergy, 34, 875-882 (2010).

2

2. S. K. Hoekman, A. Broch, C. Robbins, B. Zielinska, and L. Felix, Biomass Conversion and Biorefinery, 3, 113-126 (2013).

3

3. L. Xiao, Z. Shi, F. Xu, and R. Sun, Bioresour. Technol., 118, 619-623 (2012).

4

4. K. Chan, L. Van Zwieten, I. Meszaros, A. Downie, and S. Joseph, Soil Res., 45, 629-634 (2008).

5

5. J. A. Libra, K. S. Ro, C. Kammann, A. Funke, N. D. Berge, Y. Neubauer, M. Titirici, C. Fühner, O. Bens, and J. Kern, Biofuels, 2, 71-106 (2011).

6

6. D. Mohan, A. Sarswat, Y. S. Ok, and C. U. Pittman Jr., Bioresour. Technol., 160, 191-202 (2014).

7

7. G. W. Huber, S. Iborra, and A. Corma, Chem. Rev., 106,4044-4098 (2006).

8

8. G. Knothe, Fuel Process Technol., 86, 1059-1070(2005).

9

9. G. Knothe, Energ. Fuel., 22, 1358-1364 (2008).

10

10. S. S. Toor, L. Rosendahl, and A. Rudolf, Energy, 36, 2328-2342 (2011).

11

11. F. Ateş, E. Pütün, and A. E. Pütün, J. Anal. Appl. Pyrolysis, 71, 779-790 (2004).

12

12. D. Mohan, C. U. Pittman, and P. H. Steele, Energ. Fuel., 20, 848-889 (2006).

13

13. N. M. Bennett, S. S. Helle, and S. J. B. Duff, Bioresour. Technol., 100, 6059-6063 (2009).

14

14. F. Mud, F. Van Geel, R. Venderbosch, and H. Heeres, Sep. Sci. Technol., 43, 3056-3074 (2008).

15

15. S. Dadfarnia, and A. M. Haji Shabani, Anal. Chim. Acta., 658, 107-119 (2010).

16

16. H. Liu, and P. K. Dasgupta, Anal. Chem., 68, 1817-1821(1996).

17

17. M. A. Jeannot, F. F. Cantwell, Anal. Chem., 68, 2236-2240 (1996).

18

18. M. Á. Bello-López, M. Ramos-Payán, J. A. Ocaña-González, R. Fernández-Torres, and M. Callejón-Mochón, Anal. Lett., 45, 804-830 (2012).

19

19. J. Lee, H. K. Lee, K. E. Rasmussen, and S. Pedersen-Bjergaard, Anal. Chim. Acta., 624, 253-268 (2008).

20

20. L. Chimuka, E. Cukrowska, M. Michel, and B. Buszewski, TrAC Trends in Anal. Chem., 30, 1781-1792 (2011).

21

21. M. Saraji, M. T. Jafari, and H. Sherafatmand, J. Chromatogr. A., 1217, 5173-5178 (2010).

22

22. S. Yu, Q. Xiao, B. Zhu, X. Zhong, Y. Xu, G. Su, and M. Chen, J. Chromatogr. A., 1329, 45-51 (2014).

23

23. J. Abulhassani, J. L. Manzoori, and M. Amjadi, J. Hazard. Mater., 176, 481-486 (2010).

24

24. G. H. Siang, A. Makahleh, B. Saad, and B. P. Lim, J. Chromatogr. A., 1217, 8073-8078 (2010).

25

25. G. Ouyang, W. Zhao, and J. Pawliszyn, J. Chromatogr. A., 1138, 47-54 (2007).

26

26. M. R. Khalili Zanjani, Y. Yamini, S. Shariati, and J. Å. Jönsson, Anal. Chim. Acta., 585, 286-293 (2007).

상단으로 이동

Analytical Science and Technology