Article Detail

Home > Article Detail
  • P-ISSN 1225-0163
  • E-ISSN 2288-8985

Effect of particle size of TiO2 and octyl-methoxycinnamate (OMC) content on sun protection factor (SPF)

Analytical Science and Technology / Analytical Science and Technology, (P)1225-0163; (E)2288-8985
2017, v.30 no.4, pp.159-166
https://doi.org/10.5806/AST.2017.30.4.159





  • Downloaded
  • Viewed

Abstract

Exposure to UV light, i.e., UV-A (320-400 nm) or UV-B (290-320 nm) radiation, can cause skin cancer. Titanium dioxide (TiO2) effectively disperses UV light. Therefore, it is used as a physical UV filter in many UV light blockers. Usually, the TiO2 content in commercialized UV blockers is 25 % at most. To block UV-B, a chemical UV blocker, octyl-methoxy cinnamate (OMC) is used. OMC is commonly used in combination with TiO2. In this study, TiO2 and OMC were mixed in different proportions to produce UV blockers with different compositions. Also the changes in the sun protection factor (SPF) based on the composition and TiO2 particle sizes were investigated. In order to analyze the TiO2 particle size, dynamic light scattering (DLS) and asymmetrical flow field-flow fractionation (AsFlFFF) were used. The results showed that the SPF was influenced by the proportion of TiO2 and OMC, where the proportion of TiO2 induced a more significant influence. In addition, changes in the TiO2 particle size based on the proportion of OMC were observed.

keywords
Titanium dioxide (<TEX>$TiO_2$</TEX>), Octyl-methoxy cinnamate (OMC), Sun protection factor (SPF), Asymmetrical flow field-flow fractionation (AF4), Dynamic light scattering (DLS)


Reference

1

1. D. R. Hayden, A. Imhof, and K. P. Velikov, ACS Appl. Mater. Inter., 8(48), 32655-32660 (2016).

2

2. G.-S. Sim, J.-H. Kim, Y. Na, D.-H. Lee, B.-C. Lee, Y.-H. Zhang, and H.-B. Pyo, J. Soc. Cosmet. Sci. Korea, 31(4), 329-335 (2005).

3

3. B. A. Gilchrest, N. A. Soter, J. S. Stoff, and M. C. Mihm, J. Am. Acad. Dermatol., 5(4), 411-422 (1981).

4

4. F. M. Vilela, F. M. Oliveira, F. T. Vicentini, R. Casagrande, W. A. Verri, Jr., T. M. Cunha, and M. J. Fonseca, J. Photoch. Photobio. B, 163, 413-420 (2016).

5

5. Y. Yoon, S. Bae, S. An, Y. B. Choe, K. J. Ahn, and I. S. An, Kor. J. Aesthet. Cosmetol., 11(3), 417-426 (2013).

6

6. D.-C. Shin, J.-T. Lee, Y. Chug, N.-K. Kang, and J.-Y. Yang, Environ. Health Toxicol., 11(1), 1-10 (1996).

7

7. S. Miksa, D. Lutz, C. Guy, and E. Delamour, Int. J. Cosmet. Sci., 38(6), 541-549 (2016).

8

8. J. P. Santos Caetano, A. P. Abarca, M. Guerato, L. Guerra, S. Schalka, D. C. Perez Simao, and R. Vila, Int. J. Cosmet. Sci., 38(6), 576-580 (2016).

9

9. S. K. Jeon, E. J. Kim, J. Lee, and S. Lee, J. Hazard. Mater., 317, 312-318 (2016).

10

10. D. Park, H. M. Shahbaz, S. H. Kim, M. Lee, W. Lee, J. W. Oh, D. U. Lee, and J. Park, Int. J. Food Microbiol., 238, 256-264 (2016).

11

11. A. P. Popov, A. V. Priezzhev, J. Lademann, and R. Myllylä, J. Phys. D: Appl. Phys., 38(15), 2564-2570(2005).

12

12. N. Serpone, D. Dondi, and A. Albini, Inorg. Chim. Acta, 360(3), 794-802 (2007).

13

13. L. A. Baker, L. C. Grosvenor, M. N. R. Ashfold, and V. G. Stavros, Chem. Phys. Lett., 664, 39-43 (2016).

14

14. C.-K. Zhoh, H.-J. Kwon, and S.-R. Ahn, Asia J. Beauty Cosmetol., 9(2), 1-8 (2011).

15

15. A. Samontha, J. Shiowatana, and A. Siripinyanond, Anal. Bioanal. Chem., 399(2), 973-978 (2011).

16

16. C. C. Lin and W. J. Lin, Food and Durg Analysis, 19, 1-8 (2011).

17

17. D. Nesseem, Int. J. Cosmet. Sci., 33(1), 70-79 (2011).

18

18. J. C. Giddings, F. J. F. Yang, and M. N. Myers, Science, 193(4259), 1244-1245 (1976).

19

19. J. C. Giddings, ‘Characterization of colloid-sized and larger particles by field-flow fractionation’, Los Angeles, CA, USA, 156-159 (1988).

20

20. J. C. Giddings, Science, 260(5113), 1456-1465 (1993).

21

21. Martin E. Schimpf, Karin Caldwell, and J. C. Giddings, In ‘Chapter 18. Asymmetrical Flow Field-Flow Fractionation’, pp 279-294, K. G. Wahlund, Ed., Wiley-Interscience, New York, 2000.

22

22. Martin E. Schimpf, Karin Caldwell, and J. C. Giddings, In ‘Chapter 2. Retention-Normal Mode’, pp 31-48, Mark R. Schure, Martin E. Schimpf, and P. D. Schettler, Eds., Wiley-Interscience, New York, 2000.

23

23. Ministry of Food and Drug Safety No. 2012-88(2012.08. 24), Republic of Korea.

24

24. C. H. Eum, D. Y. Kang, and S. Lee, J. Korean Soc. Environ. Anal., 9(4), 243-249 (2006).

25

25. E. J. Kim, M. J. Kim, N. R. Im, and S. N. Park, J. Photoch. Photobio. B, 149, 196-203 (2015).

26

26. S. Schachermeyer, J. Ashby, M. Kwon, and W. Zhong, J. Chromatogr. A, 1264, 72-79 (2012).

27

27. A. Zattoni, D. C. Rambaldi, P. Reschiglian, M. Melucci, S. Krol, A. M. C. Garcia, A. Sanz-Medel, D. Roessner, and C. Johann, J. Chromatogr. A, 1216(52), 9106-9112(2009).

28

28. S. Lee, S. Prabhakara Rao, M. H. Moon, and J. Calvin Giddings, Anal. Chem., 68(9), 1545-1549 (1996).

29

29. J. Choi, H. D. Kwen, Y. S. Kim, S. H. Choi, and S. Lee, Microchem. J., 117, 34-39 (2014).

상단으로 이동

Analytical Science and Technology