- P-ISSN 1225-0163
- E-ISSN 2288-8985
Rice endosperm, the portion that remains after milling, is the part of the rice seed that is primarily consumed as a source of nutrients. There have been many studies on polysaccharides, such as hemicellulose, cellulose, and pectins, derived from the cell walls of various plant groups. It has been reported that the acidic polysaccharide fractions, which contain water-soluble pectins that have been shown to have pharmacological effects in vivo and in vitro, have common chemical structures that include galacturonic acid polymers, rhamnose, arabinose, and galactose. However, few studies have been conducted on the acidic polysaccharides contained in the endosperm of rice. In this study, we quantitatively compared the differences in the acidic polysaccharide contents from samples from two of the main varieties of rice consumed as staple foods, japonica and indica, using a colorimetric method. Rice samples were collected from 39 different regions in Korea, China, Thailand and Vietnam. Acidic polysaccharide fractions were obtained by precipitation of the alcohol-insoluble residue (AIR) and enzyme treatment of each sample. The total amount of carbohydrates and uronic acid in each acidic polysaccharide fraction were measured using the phenol-sulfuric acid method and the carbazole-sulfuric acid method, respectively. The differences in the total polysaccharide contents in the acidic polysaccharide fractions were not statistically significant (p = 0.07), but the uronic acid contents were significantly different between the two groups (p = 0.04).
1. ‘Consensus Document on the Biology of Oryza Sativa (rice)’, Organisation for Economic Co-operation and Development, 1999.
2. D. Normile, Science, 275(5298), 309-309 (1997).
3. S. Muthayya, J. D. Sugimoto, S. Montgomery, and G. F. Maberly, Ann N Y Acad Sci., 1324, 7-14 (2014).
4. G. S. Khush, In ‘Oryza: From Molecule to Plant’, pp 25-34, T. Sasaki, and G. Moore, Eds., Springer Netherlands, Dordrecht, 1997.
5. O. A. Olsen, ‘Endosperm: Developmental and MolecularBiology’, Springer Berlin Heidelberg, 2007.
6. S. C. Zeeman, J. Kossmann, and A. M. Smith, Annu. Rev. Plant. Biol., 61(1), 209-234 (2010).
7. B. Svihus, A. K. Uhlen, and O. M. Harstad, Anim. Feed. Sci. Tech., 122(3-4), 303-320 (2005).
8. R. Hoover, Carbohydrate Polymers, 45(3), 253-267(2001).
9. M. C. Sweedman, M. J. Tizzotti, C. Schäfer, and R. G. Gilbert, Carbohydrate Polymers, 92(1), 905-920 (2013).
10. A. A. Wani, P. Singh, M. A. Shah, U. Schweiggert-Weisz, K. Gul, and I. A. Wani, Anim. Feed. Sci. Tech., 11(5), 417-436 (2012).
11. L. Copeland, J. Blazek, H. Salman, and M. C. Tang, Food Hydrocolloids, 23(6), 1527-1534 (2009).
12. N. Shibuya and T. Iwasaki, Agric. Biol. Chem., 42(12), 2259-2266 (2014).
13. M. Ochoa-Villarreal, E. Aispuro-Hernández, I. Vargas-Arispuro, and M. Á. Martínez-Téllez, In ‘Polymerization’, p Ch. 04, A. D. S. Gomes, Ed., InTech, Rijeka, 2012.
14. N. C. Carpita and D. M. Gibeaut, The Plant Journal :for Cell and Molecular Biology, 3(1), 1-30 (1993).
15. T. Yamagishi, T. Tsuboi, and K. Kikuchi, Cereal Chemistry Journal, 80(1), 5-8 (2003).
16. X.-Q. Zha, J.-H. Wang, X.-F. Yang, H. Liang, L.-L. Zhao, S.-H. Bao, J.-P. Luo, Y.-Y. Xu, and B.-B. Zhou, Carbohydrate Polymers, 78(3), 570-575 (2009).
17. M. Takeshita, S. Nakamura, F. Makita, S. Ohwada, Y. Miyamoto, and Y. Morishita, Biotherapy (Dordrecht, Netherlands), 4(2), 139-45 (1992).
18. J.-Y. Shin, J.-Y. Song, Y.-S. Yun, H.-O. Yang, D.-K. Rhee, and S. Pyo, Immunopharm. Immunot., 24(3), 469-482 (2002).
19. K.-H. Kim, Y.-S. Lee, I.-S. Jung, S.-Y. Park, H.-Y. Chung, I.-R. Lee, and Y.-S. Yun, Planta Med, 64(02), 110-115 (1998).
20. Y. S. Kim, K. S. Kang, and S. I. Kim, Arch. Pharm. Res., 13(4), 330-337 (1990).
21. X. F. Du, C. Z. Jiang, C. F. Wu, E. K. Won, and S. Y. Choung, Arch. Pharm. Res., 31(9), 1153-1159 (2008).
22. J.-H. Lee, J. S. Shim, J. S. Lee, M.-K. Kim, M.-S. Chung, and K. H. Kim, Carbohyd. Res., 341(9), 1154-1163(2006).
23. J. Wang, S. Li, Y. Fan, Y. Chen, D. Liu, H. Cheng, X. Gao, and Y. Zhou, J. Ethnopharmacol., 130(2), 421-423(2010).
24. Y.-S. Kwak, J.-S. Kyung, J. S. Kim, J. Y. Cho, and M.-H. Rhee, Biol. Pharm. Bull., 33(3), 468-472 (2010).
25. X. Zhang, L. Yu, H. Bi, X. Li, W. Ni, H. Han, N. Li, B. Wang, Y. Zhou, and G. Tai, Carbohyd. Res., 77(3), 544-552 (2009).
26. N. Shibuya and R. Nakane, Phytochemistry, 23(7), 1425-1429 (1984).
27. B. L. Ridley, M. A. O'Neill, and D. Mohnen, Phytochemistry, 57(6), 929-967 (2001).
28. R. R. Selvendran and M. A. O'Neill, Methods. Biochem. Anal., 32, 25-153 (1987).
29. K. H. Caffall and D. Mohnen, Carbohyd. Res., 344(14), 1879-1900 (2009).
30. Z. A. Popper and S. C. Fry, Planta, 227(4), 781-794(2008).
31. W. S. York, V. S. K. Kolli, R. Orlando, P. Albersheim, and A. G. Darvill, Carbohyd. Res., 285, 99-128 (1996).
32. K. A. Garleb, L. D. Bourquin, and G. C. Fahey, J. Food Sci., 56(2), 423-426 (1991).
33. M. A. Coimbra, A. Barros, M. Barros, D. N. Rutledge, and I. Delgadillo, Carbohyd. Res., 37(3), 241-248 (1998).
34. K. A. C. C. Taylor, Appl. Biochem. Biotech., 43(1), 51-54 (1993).
35. F. A. Pettolino, C. Walsh, G. B. Fincher, and A. Bacic, Nat. Protoc., 7(9), 1590-607 (2012).
36. L. E. Bartley, M. L. Peck, S. R. Kim, B. Ebert, C. Manisseri, D. M. Chiniquy, R. Sykes, L. Gao, C. Rautengarten, M. E. Vega-Sanchez, P. I. Benke, P. E. Canlas, P. Cao, S. Brewer, F. Lin, W. L. Smith, X. Zhang, J. D. Keasling, R. E. Jentoff, S. B. Foster, J. Zhou, A. Ziebell, G. An, H. V. Scheller, and P. C. Ronald, Plant Physiol, 161(4), 1615-33 (2013).
37. T. Masuko, A. Minami, N. Iwasaki, T. Majima, S.-I. Nishimura, and Y. C. Lee, Anal. Biochem., 339(1), 69-72 (2005).
38. K. Zhao, C.-W. Tung, G. C. Eizenga, M. H. Wright, M. L. Ali, A. H. Price, G. J. Norton, M. R. Islam, A. Reynolds, J. Mezey, A. M. McClung, C. D. Bustamante, and S. R. McCouch, 2, 467 (2011).