Article Detail

Home > Article Detail
  • P-ISSN 1225-0163
  • E-ISSN 2288-8985

Article Contents

    Cyanide detection based on natural dyes reaction from blue butterfly pea flowers (Clitoria Ternatea)

    Analytical Science and Technology / Analytical Science and Technology, (P)1225-0163; (E)2288-8985
    2022, v.35 no.4, pp.153-160
    https://doi.org/10.5806/AST.2022.35.4.153
    Chatrachatchaya Chotichayapong (Department of Applied Chemistry, Faculty of Sciences and Liberal arts, Thailand)
    Pusita Kuchaiyaphum (Department of Applied Chemistry, Faculty of Sciences and Liberal arts, Thailand)
    Nutthaya Butwong (Department of Applied Chemistry, Faculty of Sciences and Liberal arts, Thailand)
    Worapong Bua-ngern (Department of Applied Chemistry, Faculty of Sciences and Liberal arts, Thailand)
    • Downloaded
    • Viewed

    Abstract

    A green spectrophotometric method for the determination of cyanide has been proposed using, a green reagent, aqueous extract of blue butterfly pea. The test tube was filled with anthocyanin rich extract (pH 6) and cyanide solution. The reaction was kept constant for 10 minutes at room temperature. The reaction mixture changed color from blue to green as the amount of CN-ions increased. The 620 nm peak intensity increased with CN concentration. Therefore, this wavelength was used for all cyanide analyses. The cyanide calibration curve had a linear range of 0.25-1.00, 1.00-4.00, and 4.00-10.00 mg/L, with a satisfactory correlation coefficient of 0.99 and a LOD of 0.57 mg/L. The recovery ranged from 8.33 to 76.94 percent, indicating that this method is inaccurate at low cyanide concentrations. The intra-day and intermediate precision relative deviations were 0.391-0.871 % and 1.112-1.583 %. An H-bond forms between the C-4 group of the B-carbonyl ring and the HCN molecule according to the B3LYP/TZVP calculation. The method is convenient for cyanide concentrations above the LOQ of 1.09 mg/L, cost-effective, and capable of reducing toxic solvents with acceptable precision. The method could also be used to detect total cyanide in biological, environmental, and industrial waste samples.

    keywords
    cyanide, blue butterfly pea flower, spectrophotometry, green method


    Reference

    1

    1. M. Chaudhary, M. Verma, K. C. Jena and N. Singh, Chemistry Select., 5, 8246-8252 (2020).

    2

    2. R. Badugu, J. R. Lakowicz and C. D. Geddes, J. Am. Chem. Soc., 127, 3635-3641 (2005).

    3

    3. O. Destanoğlu, G. G. Yılmaz and R. Apak, J. Liq. Chromatogr. Relat., 38, 1537-1545 (2015).

    4

    4. S. S. M. Hassan, M. S. A. Hamza and A. E. Kelany, Talanta, 71, 1088-1095 (2007).

    5

    5. A. Mohammadi, Z. Dehghan, M. Rassa and N. Chaibakhsh, Sens. Actuators. B. Chem., 230, 388-397 (2016).

    6

    6. R. Badugu, J. R. Lakowicz and C. D. Geddes, Dyes Pigm., 64(1) 49-55 (2005).

    7

    7. C. Christine Männel-Croisé and M. Zelder, Inorg. Chem. Commun., 48(4), 1272-1274 (2009).

    8

    8. P. M. Reddy, S. R. Hsieh, M. C. Lee, C. J. Chang, A. Pundi, Y. S. Chen, C. H. Lu and J. M. Yeh, Dyes Pigm., 164, 327-334 (2019).

    9

    10. F. H. Zelder and C. Männe-Croisé, Chimia., 63, 58-62(2009).

    10

    11. P. M. Reddy, R. Hsieh, C. J. Chang and J. Y. Kang, J. Hazard. Mater., 334, 93-103 (2017).

    11

    12. J. B. Harborne, Phytochemical Methods: A Guide to Modern techniques of Plant, Chapman and Hall, London (1996).

    12

    13. G. H. Laleh, H. Frydoonfar, R. Heidary, R. Jamei and S. Zare, Pak. J. Nutr., 5(1), 90-92 (2006).

    13

    14. C. Wongs-Aree, M. M. Giusti and S. J. Schwartz, Acta Hortic., 712, 437-442 (2006).

    14

    15. A. M. Marpaung, N. Andarwulan, P. Hariyadi and N. Faridah, 17th Food innovation asia conference 2015(FIAC 2015) Bangkok Thailand 18-19 June 2015.

    15

    16. N. M. Saptarini, D. D. Suryasaputra and H. Nurmalia, J. Chem. Pharm. Res., 7(2), 275 (2015).

    16

    17. K. Kazuma, N. Noda and M. Suzuki, Phytochem., 64, 1133-1139 (2003).

    17

    18. P. K. Mukherjeem, V. Kumar, N. S. Kumar and M. Heinrich, J. Ehthnopharmacol., 120, 291-301 (2008).

    18

    19. F. He, N-N. Liang, L. Mu, Q-H. Pan, J. Wang, M. J. Reeves and C-Q. Duan, Molecules, 17, 1483-1519 (2012).

    19

    20. J. E. Farr and M. M. Giusti, Molecules, 23(4), 744 (2018).

    20

    21. E. Salas, H. Fulcrand, E. Meudec and V. Cheynier, J. Agri. Food Chem., 51, 7951-7961 (2003).

    21

    22. C. A. Galán-Vidal, A. Castañeda-Ovando, M. E. Páez-Hernándaz and E. Contreras-López, J. Mex. Chem., 58(2), 180-184 (2014).

    22

    23. S, H, Bondre, P, Patil, A, A, Kulkarni and M, M, Pillai, Int. J. Adv. Biotechnol. Res., 3(3), 698 (2012).

    23

    25. L. D. Falcão, A. P. Falcão, E. F. Gria and M. T. Bordignon-Luiz, Braz. J. Food Technol., 11(1), 63 (2008).

    24

    26. N. Majaj, B. C. D. Simone, A. D. Quartarolo and N. Russo, Food Chem., 141, 3614-3620 (2013).

    25

    27. H. Miyaji and J. L. Sessler, Angew. Chem., Int. Ed., 40(1), 154-157 (2001).

    26

    28. S. S. Sun and A. J. Lees, Chem. Commun., 1687-1688(2000), https://doi.org/10.1039/B004541L.

    27

    29. J. Isaad, A. H. Achari and F. Malek, Dye and Pigm., 97, 134-140 (2013).

    28

    30. A. Machodo da Silva, A. Ghosh and P. Chaudhuri, J. Phys. Chem. A., 117, 10274-10285 (2013).

    29

    31. R. Rivellino, J. Phys. Chem., 112, 161-165 (2008).

    30

    32. N. N. Tri, N. T. H. Man, N. L. Tuan, N. T. T. Trang, D. T. Quang and N. T. Trung, Theor. Chem. Acc., 136(10), 1-12 (2017).

    31

    33. J. Thisuwan and K. Sagarik, RSC Adv., 4, 61992-62008(2014).

    32

    34. H. G. Higson and L. S. Bark, Analyst, 164, 338 (1989).

    상단으로 이동

    Analytical Science and Technology