- P-ISSN 1225-0163
- E-ISSN 2288-8985
This paper describes a comparative analysis of yeast cell viability at exponential and stationary growth phases using multiple conventional techniques and statistical tools. Overall, cellular responses to various viability assays were asynchronous. Results of optical density measurement and direct cell counting were asynchronous both at exponential and stationary phases. Proliferative capacity measurement using SP-SDS indicated that cells at the end of the stationary phase were proliferative as much as exponentially growing cells. Metabolic activity assays using two different dyes concluded that the inside of cells at stationary phase is slightly less reducing compared to that of exponentially growing cells, implying that the metabolic activity imperceptibly declined as cells were aged. These results will be helpful to understand the details of yeast cell viability at exponential and stationary growth phases.
1. A.-C. Gavin, P. Aloy, P. Grandi, R. Krause, M. Boesche, M. Marzioch, C. Rau, L. J. Jensen, S. Bastuck, B. Dümpelfeld, A. Edelmann, M.-A. Heurtier, V. Hoffman, C. Hoefert, K. Klein, M. Hudak, A.-M. Michon, M. Schelder, M. Schirle, M. Remor, T. Rudi, S. Hooper, A. Bauer, T. Bouwmeester, G. Casari, G. Drewes, G. Neubauer, J. M. Rick, B. Kuster, P. Bork, R. B. Russell and G. Superti-Furga, Nature, 440(7084), 631-636 (2006).
2. J. Förster, I. Famili, P. Fu, B. Ø. Palsson and J. Nielsen, Genome Research, 13(2), 244-253 (2003).
3. G. Cazzanelli, F. Pereira, S. Alves, R. Francisco, L. Azevedo, P. Dias Carvalho, A. Almeida, M. Côrte-Real, M. J. Oliveira, C. Lucas, M. J. Sousa and A. Preto, Cells, 7(2), 14 (2018).
4. N. Nagaraj, N. Alexander Kulak, J. Cox, N. Neuhauser, K. Mayr, O. Hoerning, O. Vorm and M. Mann, Molecular &Cellular Proteomics, 11(3), M111.013722 (2012).
5. S. Ostergaard, L. Olsson and J. Nielsen, Microbiology and Molecular Biology Reviews, 64(1), 34-50 (2000).
6. M. Kaeberlein, R. W. Powers Iii, K. K. Steffen, E. A. Westman, D. Hu, N. Dang, E. O. Kerr, K. T. Kirkland, S. Fields and B. K. Kennedy, Science, 310(5751), 1193-1196(2005).
7. Valter D. Longo, Gerald S. Shadel, M. Kaeberlein and B. Kennedy, Cell Metabolism, 16(1), 18-31 (2012).
8. M. Kwolek-Mirek and R. Zadrag-Tecza, FEMS Yeast Research, 14(7), 1068-1079 (2014).
9. G. H. Markx, C. L. Davey, and D. B. Kell, Journal of General Microbiology, 137(4), 735-743 (1991).
10. P. J. Costello and P. R. Monk, Applied and Environmental Microbiology, 49(4), 863-866 (1985).
11. J. W. Messer, E. W. Rice and C. H. Johnson (1999).
12. D. M. Kuhn, M. Balkis, J. Chandra, P. K. Mukherjee and M. A. Ghannoum, J Clin Microbiol, 41(1), 506-508(2003).
13. R. López-Amorós, J. Comas and J. Vives-Rego, Applied and Environmental Microbiology, 61(7), 2521-2526(1995).
14. K. Painting and B. Kirsop, World Journal of Microbiology and Biotechnology, 6(3), 346-347 (1990).
15. J. R. Broach, Genetics, 192(1), 73-105 (2012).
16. R. Loewith and M. N. Hall, Genetics, 189(4), 1177-1201 (2011).
17. M. Eigenfeld, R. Kerpes and T. Becker, Frontiers in Fungal Biology, 2, Article# 665490 (2021).
18. Y. Sun, R. Yu, H.-B. Guo, H. Qin and W. Dang, GeroScience, 43(5), 2573-2593 (2021).
19. M. Hotz, N. H. Thayer, D. G. Hendrickson, E. L. Schinski, J. Xu and D. E. Gottschling, Proceedings of the National Academy of Sciences, 119(15), e2119593119 (2022).
20. P. Thomas, A. C. Sekhar, R. Upreti, M. M. Mujawar and S. S. Pasha, Biotechnology Reports, 8, 45-55 (2015).
21. K. Chamchoy, D. Pakotiprapha, P. Pumirat, U. Leartsakulpanich and U. Boonyuen, BMC Biochemistry, 20(1), 4 (2019).
22. R. Margesin, Extremophiles, 13(2), 257-262 (2009).
23. J. Park, S. P. McCormick, M. Chakrabarti and P. A. Lindahl, Biochemistry, 52(52), 9413-9425 (2013).