바로가기메뉴

본문 바로가기 주메뉴 바로가기

logo

  • KOREAN
  • P-ISSN2287-8327
  • E-ISSN2288-1220
  • SCOPUS, KCI

Life History Traits and the Rate of Molecular Evolution in Galliformes (Aves)

Journal of Ecology and Environment / Journal of Ecology and Environment, (P)2287-8327; (E)2288-1220
2008, v.31 no.1, pp.75-81
Eo, Soo Hyung (University of Georgia)

Abstract

Rates of molecular evolution are known to vary widely among taxonomic groups. A number ofstudies, examing various taxonomic groups, have indicate d that body size is negatively and clutch size is positively correlated with the rates of nucleotide substitutions among vertebrate species. Generally, either smaller body mas or larger clutch size is associated with shorter generation times and higher metabolic rates. However, this generality is subject to ongoing debate, and large-scale comparative studies of species below the Order level of the mitochondrial cytochrome b evolution and a range of life history traits, such as body mass and clutch size in the Order Galliformes. This analysis included data from 67 species of Galliformes birds and 2 outgroup species in Anseriformes. In contrast to previous studies, taxa were limited to within-Order level, not to Clas or higher. I found no evidence to support an effect of life history traits on the rate of molecular evolution within the Galliformes. These results suggest that such relationship may be too weak to be observed in comparisons of closely related species or may not be a general pattern that is applicable to all nucleotide sequences or al taxonomic groups.

keywords
Galliformes, Life history, Molecular evolution, Phylogenetic comparative method

Reference

1.

Amstrong MH, Braun EL, Kimball RT. 2001. Phylogenetic utility of avian ovomucoid intron G: a comparison of nuclear and mitochondrial phylogenies in galliformes. Auk 118: 799-804.

2.

Barraclough TG, Harvey PH, Nee S. 1996. Rate of rbcL gene sequence evolution and species diversification in flowering plants. Proc R Soc Lond B 263: 589-591.

3.

Barraclough TG, Nee S, Harvey PH. 1998. Sister-group analysis in identifying correlates of diversification. Evol Ecol 12: 751-754.

4.

Barraclough TG, Savolainen V. 2001. Evolutionary rates and species diversity in flowering plants. Evolution 55: 677-683.

5.

Britten RJ. 1986. Rates of DNA sequence evolution differ between taxonomic groups. Science 231: 1393-1398.

6.

Bromham L. 2002. Molecular clocks in reptiles: life history influences rate of molecular evolution. Mol Biol Evol 19: 302-309.

7.

Bromham L, Cardillo M. 2003. Testing the link between the latitudinal gradient in species richness and rates of molecular evolution. J Evol Biol 16: 200-207.

8.

Bromham L, Penny D. 2003. The modern molecular clock. Nat Rev Genet 4: 216-224.

9.

Bromham L, Leys R. 2005. Sociality, population size and rate of molecular evolution. Mol Biol Evol 22: 1393-1402.

10.

Del Hoyo J, Elliott A, Sargatal J. 1994. Handbook of the birds of the world. vol.II. New World Vultures to Guineafowl. Lynx Edicions, Barcelona.

11.

Dunning JB. 1993. CRC handbook of avian body masses. CRC Press, Boca Raton.

12.

Engstrom TN, Shaffer HB, McCord WP. 2004. Multiple data sets, high homoplasy, and the phylogeny of softshell turtles (Testudines: Trionychidae). Syst Biol 53: 693-710.

13.

Felsenstein J. 1985. Phylogenies and the comparative method. Am Nat 125: 1-15.

14.

Fujita MK, Engstrom TN, Starkey DE, Shaffer HB. 2004. Turtle phylogeny: insights from a novel nuclear intron. Mol Phylogenet Evol 31: 1031-1040.

15.

Garcia-Machado E, Pempera M, Dennebouy N, Oliva-Suarez M, Mounolou JC, Monnerot M. 1999. Mitochondrial genes collectively suggest the paraphyly of crustacea with respect to insecta. J Mol Evol 49: 142-149.

16.

Gillooly JF, Allen AP, West GB, Brown JH. 2005. The rate of DNA evolution: Effects of body size and temperature on the molecular clock. Proc Natl Acad Sci 102: 140-145.

17.

Harvey PH, Pagel M. 1991. The comparative method in evolutionary biology. Oxford University Press, Oxford.

18.

Held C. 2001. No evidence for slow-down of molecular substitution rates at subzero temperatures in Antarctic serolid isopods (Crustacea, Isopoda, Serolidae). Polar Biol 24: 497-501.

19.

Kohne DE. 1970. Evolution of higher-organism DNA. Q Rev Biophys 33: 327-375.

20.

Kumar S, Tamura K, Nei M. 2004. MEGA3: integrated software for molecular evolutionary genetics analysis and sequence alignment. Briefings Bioinformatics 5: 150-163.

21.

Madge S, McGowan P. 2002. Pheasants, Partridges, & Grouse. Princeton university press, Princeton.

22.

Martin AP, Palumbi SR. 1993. Body size, metabolic rate, generation time, and the molecular clock. Proc Natl Acad Sci 90: 4087-4091.

23.

Mooers AØ, Harvey PL. 1994. Metabolic rate, generation time, and the rate of molecular evolution in birds. Mol Phylogenet Evol 3: 344-350.

24.

Naylor GJP, Brown WM. 1998. Amphioxus mitochondrial DNA, chordate phylogeny, and the limits of inference based on comparisons of sequences. Syst Biol 47: 61-76.

25.

Nunn GB, Stanley SE. 1998. Body size effects and rates of cytochromeb evolution in Tube-nosed Seabirds. Mol Biol Evol 15: 1360-1371.

26.

Page RDM, Holmes EC. 1998. Molecular evolution: a phylogenetic approach. Blackwell Science, Oxford.

27.

Prychitko TM, Moore WS. 2003. Alignment and phylogenetic analyses of b-fibrinogen intron 7 sequences among avian orders reveal conserved regions within the intron. Mol Biol Evol 20: 762-771

28.

Rand DM. 1994. Thermal habit, metabolic rate and the evolution of mitochondrial DNA. Trends Ecol Evol 9: 125-131.

29.

Robinson M, Gouy M, Gautier C, Mouchiroud D. 1998. Sensitivity of the relative-rate test to taxonomic sampling. Mol Biol Evol 15: 1091-1098.

30.

Rowe DL, Honeycutt RL. 2002. Phylogenetic relationships, ecological correlates, and molecular evolution within the cavioidea (mammalia, rodentia). Mol Biol Evol 19: 263-277.

31.

Schmitz J, Moritz RFA. 1998. Sociality and the rate of rDNA sequence evolution in wasps (Vespidae) and honeybees (Apis). J Mol Evol 47: 606-612.

32.

Thomas JA, Welch JJ, Woolfit M, Bromham. 2006. There is no universal molecular clock for invertebrates, but rate variation does not scale with body size. Proc Natl Acad Sci 103: 7366-7371.

33.

Wiens JJ, Hollingsworth BD. 2000. War of the Iguanas: conflicting molecular and morphological phylogenies and long-branch attraction in iguanid lizards. Syst Biol 49: 143-159.

34.

Wu C, Li W. 1985. Evidence for higher rates of nucleotide substitution in rodents than in man. Proc Natl Acad Sci 82: 1741-1745.

35.

Yoder AD, Yang Z. 2000. Estimation of primate speciation dates using local molecular clocks. Mol Biol Evol 17: 1081-1090.

36.

Zhong Y, Zhao Q, Shi S, Huang Y, Hasegawa M. 2002. Detecting evolutionary rate heterogeneity among mangroves and their close terrestrial relatives. Ecol Lett 5: 427-432.

Journal of Ecology and Environment