바로가기메뉴

본문 바로가기 주메뉴 바로가기

ACOMS+ 및 학술지 리포지터리 설명회

  • 한국과학기술정보연구원(KISTI) 서울분원 대회의실(별관 3층)
  • 2024년 07월 03일(수) 13:30
 

logo

  • ENGLISH
  • P-ISSN2287-8327
  • E-ISSN2288-1220
  • SCOPUS, KCI

Fine-scale initiation of non-native Robinia pseudoacacia riparian forests along the Chikumagawa River in central Japan

Journal of Ecology and Environment / Journal of Ecology and Environment, (P)2287-8327; (E)2288-1220
2014, v.37 no.1, pp.21-29
https://doi.org/10.5141/ecoenv.2014.003
Hiroyuki Kurokochi (Graduate School of Agricultural and Life Sciences,University of Tokyo,)
Taizo Hogetsu (Graduate School of Agricultural and Life Sciences,University of Tokyo)

Abstract

Robinia pseudoacacia has become invasively naturalized in Japan. We investigated the role of sexual reproduction in thedevelopment of R. pseudoacacia riparian forests along the Chikumagawa River in Japan, by using five chloroplast (cpSSR)and seven nuclear (nSSR) markers. We identified eight chloroplast haplotypes and 147 nuclear genotypes from 619 R. pseudoacacia trees sampled in three plots (Plots A, B, and C) and along two line transects (Lines D and E). CpSSR analysesshowed that multiple maternal lines were distributed along the river, and that some haplotypes from different populationsoverlapped. In addition, while Plots A and B were separated by a short distance, only these two plots exhibitedgenetic differentiation in the haplotypes. In the nSSR analysis, all pairwise FST values among the three plots were significantlydifferent from zero. Kinship analysis based on nSSR markers revealed that kinship connected many individuals toanother individual from the same plot. These results indicate that seed dispersal near to mother trees contributes to thefine-scale genetic structure of R. pseudoacacia riparian forests. Our results indicate that sexual reproduction, in additionto asexual reproduction, is a major contributor to the fine-scale formation of R. pseudoacacia forests.

keywords
exotic tree species, invasion, riparian forest, Robinia pseudoacacia, sexual reproduction

참고문헌

1.

Aldrich PR, Briguglio JS, Kapadia SN, Morker MU, Rawal A, Kalra P, Huebner CD, Greer GK. 2010. Genetic structure of the invasive tree Ailanthus altissima in eastern United States cities. J Bot. DOI 10.1155/2010/795735.

2.

Boring LR, Swank WT. 1984. The role of black locust (Robinia pseudoacacia) in forest succession. J Ecol 72: 749–766.

3.

Bossdorf O, Auge H, Lafuma L, Rogers WE, Siemann E, Prati D. 2005. Phenotypic and genetic differentiation between native and introduced plant populations. Oecologia 144: 1–11.

4.

Cousens R, Dytham C, Law R. 2008. Dispersal in Plants: A Population Perspective. Oxford University Press, New York, NY.

5.

Dunphy BK, Hamrick JL. 2005. Gene flow among established Puerto Rican populations of the exotic tree species, Albizia lebbeck. Heredity 94: 418–425.

6.

Fukuda M, Sakio H, Maruta E. 2005. Seedling establishment of exotic tree Robinia pseudoacacia L. on the flood plain of the Arakawa River. Jpn J Ecol 55: 387–395.

7.

Geng QF, Lian CL, Goto S, Tao JM, Kimura M, Islam MDS, Hogetsu T. 2008. Mating system, pollen and propagule dispersal, and spatial genetic structure in a high-density population of the mangrove tree Kandelia candel. Mol Ecol 17: 4724–4739.

8.

Jung SC, Matsushita N, Wu BY, Kondo N, Shiraishi A, Hogetsu T. 2009. Reproduction of a Robinia pseudoacacia population in a coastal Pinus thunbergii windbreak along the Kujukurihama Coast, Japan. J For Res 14: 101–110.

9.

Keim RF, Chambers JL, Hughes MS, Dimov LD, Conner WH, Shaffer GP, Gardiner ES, Day JW. 2006. Long-term success of stump sprouts in high-graded baldcypress-water tupelo swamps in the Mississippi delta. For Ecol Manage 234: 24–33.

10.

Konovalov DA, Manning C, Henshaw MT. 2004. KINGROUP: a program for pedigree relationship reconstruction and kin group assignments using genetic markers. Mol Ecol Notes 4: 779–782.

11.

Kurokochi H, Saito Y, Chuman M, Ide Y. 2013. Low chloroplast diversity despite of phylogenetically divergent haplotypes in Japanese populations of Ailanthus altissima (Simaroubaceae). Botany 91: 148-154.

12.

Kurokochi H, Toyama K, Hogetsu T. 2010. Regeneration of Robinia pseudoacacia riparian forests after clear-cutting along the Chikumagawa River in Japan. Plant Ecol 210: 31–41.

13.

Landenberger RE, Warner TA, McGraw JB. 2009. Spatial patterns of female Ailanthus altissima across an urban-torural land use gradient. Urban Ecosyst 12: 437–448.

14.

Langella O. 2007. Populations 1.2.30: population genetic software (individuals or populations distances, phylogenetic trees). http://bioinformatics.org/~tryphon/populations. Accessed 12 November 2013.

15.

Le Roux JJ, Brown GK, Byrne M, Ndlovu J, Richardson DM, Thompson GD, Wilson JRU. 2011. Phylogeographic consequences of different introduction histories of invasive Australian Acacia species and Paraserianthes lophantha (Fabaceae) in South Africa. Divers Distrib 17: 861-871.

16.

Lian C, Hogetsu T. 2002. Development of microsatellite markers in black locust (Robinia pseudoacacia) using a dual-suppression-PCR technique. Mol Ecol Notes 2: 211–213.

17.

Lian CL, Oishi R, Miyashita N, Nara K, Nakaya H, Wu BY, Zhou ZH, Hogetsu T. 2003. Genetic structure and reproduction dynamics of Salix reinii during primary succession on Mount Fuji, as revealed by nuclear and chloroplast microsatellite analysis. Mol Ecol 12: 609–618.

18.

Maekawa M, Nakagoshi N. 1997. Riparian landscape changes over a period of 46 years, on the Azusa River in Central Japan. Landsc Urban Plan 37: 37–43.

19.

Marshall TC, Slate J, Kruuk LEB, Pemberton JM. 1998. Statistical confidence for likelihood-based paternity inference in natural populations. Mol Ecol 7: 639–655.

20.

Masaka K, Yamada K. 2009. Variation in germination character of Robinia pseudoacacia L. (Leguminosae) seeds at individual tree level. J For Res 14: 167–177.

21.

Masaka K, Yamada K, Koyama Y, Sato H, Kon H, Torita H. 2010. Changes in size of soil seed bank in Robinia pseudoacacia L. (Leguminosae), an exotic tall tree species in Japan: Impacts of stand growth and apicultural utilization. For Ecol Manage 260: 780–786.

22.

Mishima K, Hirao T, Urano S, Watanabe A, Takata K. 2009. Isolation and characterization of microsatellite markers from Robinia pseudoacacia L. Mol Ecol Resour 9: 850–852.

23.

Negreros-Castillo P, Hall RB. 2000. Sprouting capability of 17 tropical tree species after overstory removal in Quintana Roo, Mexico. For Ecol Manage 126: 399–403.

24.

O’Hara KL, Stancioiu PT, Spencer MA. 2007. Understory stump sprout development under variable canopy density and leaf area in coast redwood. For Ecol Manage 244: 76–85.

25.

Pairon M, Petitpierre B, Campbell M, Guisan A, Broennimann O, Baret PV, Jacquemart, AL, Besnard G. 2010. Multiple introductions boosted genetic diversity in the invasive range of black cherry (Prunus serotina; Rosaceae). Ann Bot 105: 881–890.

26.

Parker IM, Simberloff D, Lonsdale WM, Goodell K, Wonham M, Karieva PM, Williamson MH, Von Holle B, Moyle PB, Byers JE, Goldwasser L. 1999. Impact: towards a framework for understanding the ecological effects of invaders. Biol Invas 1: 3–19.

27.

Rosenthal DM, Ramakrishnan AP, Cruzan MB. 2008. Evidence for multiple sources of invasion and intraspecific hybridization in Brachypodium sylvaticum (Hudson) Beauv. in North America. Mol Ecol 17: 4657–4669.

28.

Sakio H. 2009. Ecology of Robinia pseudoacacia. Bun-ichi shuppan, Tokyo.

29.

Sato T, Isagi Y, Sakio H, Osumi K, Goto S. 2006. Effect of gene flow on spatial genetic structure in the riparian canopy tree Cercidiphyllum japonicum revealed by microsatellite analysis. Heredity 96: 79–84.

30.

Schneider S, Roessli D, Excoffier L. 2000. Arlequin ver. 2.000: a software package for population genetics data analysis [user’s manual]. Genetics and Biometry Laboratory, University of Geneva, Switzerland.

31.

Society for History of Chikumagawa and Saigawa River. 2003. A century of the Chikumagawa river: survey maps in 1951 and at the present day. Shinano-mainishi-shinbunsya, Nagano. (in Japanese)

32.

Streiff R, Labee T, Bacilieri R, Steinkellner H, Gloessl J, Kremer A. 1998. Within-population genetic structure in Quercus robur L. and Quercus petraea (Matt.) Liebl. assessed with isozymes and microsatellites. Mol Ecol 7: 317–328.

33.

Sun F, Yang MS, Zhang J, Gu JT. 2009. ISSR analysis of genetic diversity of Robinia pseudoacacia populations. J Plant Genet Resour. DOI CNKI:SUN:ZWYC.0.2009-01-019.

34.

Takahashi A, Koyama H, Takahashi N. 2008. Habitat expan sion of Robinia pseudoacacia L. and role of seed banks in the Akagawa River basin. J Jpn For Soc 90: 1–5.

35.

Vitousek PM. 1990. Biological invasions and ecosystem processes: towards an integration of population biology and ecosystem studies. Oikos 57: 7–13.

Journal of Ecology and Environment