바로가기메뉴

본문 바로가기 주메뉴 바로가기

ACOMS+ 및 학술지 리포지터리 설명회

  • 한국과학기술정보연구원(KISTI) 서울분원 대회의실(별관 3층)
  • 2024년 07월 03일(수) 13:30
 

logo

메뉴

다형질 Animal Model에 의한 12개월령 한국산 전복 2 아종의 성장관련형질에 대한 유전모수 추정

Estimation of Genetic Parameters for Growth-Related Traits in 1-Year Old of Two Korean Abalone Subspecies, Haliotis discus hannai and H. discus discus, by Using Multiple Traits of Animal Mode

초록

양식 대상 종들에 있어 성장형질에 대한 개량은 선발 육종을 통하여 이루어져 왔다. 북방전복과 둥근전복은 아시아에서는 매우 중요한 전복종이 지만 그동안 이들에 대한 선발 육종연구는 활발하지 못하였으나, 최근 들어 이들 전복에 대한 선발 육종연구가 신중히 수행되고 있다. 본 연구는 12개월 령의 북방전복과 둥근전복에 대한 다형질 개체모형을 이용하여 유전력, 유전상관 및 표형형상관 등 유전모수 추정을 목적으로 수행되었다. 실험에 사용한 한국산 북방전복과 둥근전복은 동해안, 남해안, 서해안 및 제주연안의 전국 11개소로부터 자연산과 양식산으로 구분하여 수집한 후, DNA 분석에 의한 원거리 유연관계를 기초로 F1세대의 전형매 혹은 반형매군을 각각 생산하고 1년간 사육을 실시하였다. 이중 임의로 추출한 북방전복 26가계(1,509 마리), 둥근전복 6가계(297 마리)에 대해 각장(mm), 각폭(mm) 및 중량(g)에 대해 개체별 측정하고, 유전모수 추정은 성장관련형질인 각장, 각폭, 중량, 체형 및 비만도에 대해 각각 실시하였다. 개체의 성장형질에 영향을 미치는 환경효과분석을 위해 animal model에 의한 선형모형을 이용하여 SAS 통계 프로그램 package(ver. 9.1)로 통계분석을 실시하였다. 또한 유전모수 추정을 위해서는 EL-REML(restricted maximum likelihood) method를 전산 프로그램화한 REMLF90(Misztal, 2001)을 이용하여 다형질 혼합모형으로 유전모수 추정을 실시하였다. 분석모형에서 교배 sire와 dam의 자연산 혹은 양식산에 의한 교배타입을 고정효과로 하였다. 분석결과 12개월 령에서의 성장관련 형질은 북방전복에서 평균<TEX>$\pm$</TEX>표준편차가 각장 <TEX>$29.86{\pm}5.89$</TEX> mm, 각폭 <TEX>$20.70{\pm}4.09$</TEX> mm 및 중량 <TEX>$3.47{\pm}2.05$</TEX> g, 둥근전복은 각장 <TEX>$31.80{\pm}6.15$</TEX> mm, 각폭 <TEX>$21.97{\pm}4.13$</TEX> mm 및 중량 <TEX>$4.23{\pm}2.42$</TEX> g으로 각각 성장하였다. 12개월 령 북방전복의 유전율은 각장, 각폭, 중량, 체형 및 비만도에서 각각 0.43, 0.43, 0.40, 0.19, 0.09로 추정되었다. 12개월 령 둥근전복의 각장, 각폭, 중량, 체형 및 비만도에 대한 유전율은 각각 0.33, 0.26, 0.51, 0.23, 0.10으로 추정되었다. 이러한 결과로 보아, 북방전복과 둥근전복 모두 각장, 각폭 및 중량에서 중고도의 유전율이 추정되어 높은 육종효과가 기대된다. 한편 북방전복과 둥근전복의 성장관련형질에 대한 유전상관은 각장과 각폭, 각장과 중량 및 각폭과 중량 간에 각각 0.92-0.97, 0.96-0.99로 추정되어 두 종 모두에서 형질들 간의 높은 유전상관을 나타내었으며, 이들 성장관련 형질 중 어느 것을 기준으로 선발을 실시하여도 다른 관련형질에 대한 높은 개량효과가 추정되어졌다.

keywords
Haliotis discus hanani, Haliotis discus discus, selective breeding, genetic parameters, growth, heritabilities, 1-year old

Abstract

In other aquaculture species, large improvements in growth have been achieved through selective breeding. Ezo abalone (Haliotis discus hannai) and disk abalone (H. discus discus) are major aquatic animals cultured in Asia, but selective breeding for the promotion of growth with these abalones has not been actively pursued. Recently significant efforts are being made to promote production of these species through selective breeding in Korea. The aims of this work were to estimate the general genetic parameters, heritabilities, and genetic and phenotypic correlations on growth-related traits at 1-year old in two Korean abalone subspecies, H. discus hannai and H. discus discus, by using multiple trait animal model. The data were collected from the records of 1,504 individuals produced from 22 sires and 26 dams in H. discus hannai and 297 individuals produced from 5 sires and 6 dams in H. discus discus, which evaluated by the Genetics and Breeding Research Center, National Fisheries Research & Development Institute (NFRDI). Genetic parameters were estimated for these abalone subspecies raised in Bukjeju branch, NFRDI, from May 20, 2004 to May 16, 2005, respectively. The heritability estimates obtained from restricted maximum likelihood (REML) were higher than expected, ranging from 0.40 to 0.43 for growth traits shell length, shell width and body weight in H. discus hannai and from 0.26 to 0.51 in H. discus discus, respectively. The heritabilities for shell shape and condition factor were lower than others of growth traits such as ranging from 0.09 to 0.19 in H. discus hannai and from 0.10 to 0.23 in H. discus discus, respectively. Genetic and phenotypic were > 0.93 between shell parameters and weight in two abalone species, respectively, indicating that breeding for weight gains could be successfully achieved by selecting for shell length.

keywords
Haliotis discus hanani, Haliotis discus discus, selective breeding, genetic parameters, growth, heritabilities, 1-year old

참고문헌

1.

Argue, B.J, (2002) Selective breeding of Pacific white shrimp (Litopenaeus vannamei) for growth and resistance to Taura Syndrome Virus, Aquaculture

2.

Baldwin, J, (2007) Energy metabolism in the tropical abalone, Haliotis asinina, comparisons with temperate abalone species, Journal of Experimental Marine Biology and Ecology

3.

Choe, M.K, (2007) Estimation of genetic parameters for growth-related traits of two Korean abalone subspecies, Haliotis discus hannai and H. discus discus, by using multiple traits of animal model in early growth period, The Korean Journal Malacology

4.

Choe, M.K, (1998) Estimation of heritabilities of growth traits, and phenotypic and genetic correlations in juvenile masu salmon Oncorhynchus masou, Fisheries Science

5.

Crenshaw, J.W.J, (1991) Heritability of growth rate in the southern bay scallop, Argopecten irradians concentricus (Say, 1822), Journal of Shellfish Research

6.

Dixon, C.D, (2006) Successful seeding of hatchery-produced juvenile greenlip abalone to restore wild stocks, Fisheries Research

7.

Elliott,N.G, (2000) Genetic improvement programs in abalone: what is the future?, Aquaculture Research

8.

Falconer, D.S, (1989) Introduction to Quantitative genetics. Longman Scientific & Technical, Harlow/John Wiley & Son, New York

9.

Falconer, D.S, (1996) Introduction to Quantitative Genetics, Prentice Hall. New York

10.

Gall, G.A.E, (1988) Heritability and selection schemes for rainbow trout: body weight, Aquaculture

11.

Gjedrem,T, (1983) Genetic variation in quantitative traits and selective breeding in fish and shellfish, Aquaculture

12.

Gjedrem, T, (2005) Selection and Breeding Programs in Aquaculture, Springer, Dordrecht

13.

Gjerde, B, (2004) Genetic variation for juvenile growth and survival in Atlantic cod (Gadus morhua), Aquaculture

14.

Gordon, H.R, (2004) World abalone fisheries and aquaculture update: supply and market dynamics, Journal of Shellfish Research

15.

Gutierrez-Gonzalez, J.L, (2005) A genetic evaluation of stock enhancement of blue abalone Haliotis fulgens in Baja California, Mexico. Aquaculture

16.

Hadley, N.H, (1991) Realized heritability of growth rate in the hard clam Mercenaria mercenaria, Aquaculture

17.

Hara, M, (1992) Increasing growth rate of abalone, Haliotis discus hannai, using selection techniques, NOAA Technical Report

18.

Heffernan, P.B, (1993) Second heritability estimate of growth rate in the southern bay scallop, Argopecten irradians concentricus (Say, 1822), Journal of Shellfish Research

19.

Henderson,C.R, (1974) General flexibility of linear model techniques for sire evaluation, Journal of Dairy Science

20.

Henderson, C.R, (1976) Multiple trait evaluation using relative's record, Journal of Animal Science

21.

Hilbish, T.J, (1993) Genetic variation and covariation during larval and juvenile growth in Mercenaria mercenaria, Marine Biology

22.

Ibarra, A.M, (1999) Realized heritabilities and genetic correlation after dual selection for total weight and shell width in catarina scallop (Argopecten ventricosus), Aquaculture

23.

Innes, D.J, (1977) Genetic aspects of larval growth under reduced salinity in Mytilus edulis, Biological Bulletin of Marine Biology Laboratory

24.

Jones, R, (1996) Quantitative genetic analysis of growth in larval scallops (Placopecten magellanicus), Marine Biology

25.

Leaf, R.T, (2007) Spatial, temporal, and size-specific variation in mortality estimates of red abalone, Haliotis rufescens, from mark-recapture data in California, Fisheries Research

26.

Lucas, T, (2006) Heritability estimates for growth in the tropical abalone Haliotis asinina using microsatellites to assign parentage, Aquaculture

27.

Ludwig,A.N, (1989) Heritability, genetic correlation, and genotype-environment interaction of larval and juvenile growth rate in the coot clam, Mulinia lateralis, Journal of Shellfish Research

28.

Luis, J.G.-G, (2005) A genetic evaluation of stock enhancement of blue abalone Haliotis fulgens in Baja California, Mexico, Aquaculture

29.

Lymbery,A.J, (2000) Genetic improvement in the Australian aquaculture industry, Aquaculture Research

30.

Mallet, A.L, (1986) The genetics of production characters in the blue mussel Mytilus edulis. I, A preliminary analysis. Aquaculture

31.

Misztal,I, (1990) Restricted maximum likelihood estimation of variance components in animal model using sparse matrix inversion and a supercomputer, Journal of Dairy Science

32.

Patterson, H.D, (1971) Recovery of inter-block information when block sizes are unequal, Biometrika

33.

Rawson, P.D, (1990) Heritability of juvenile growth for the hard calm Mercenaria mercenaria, Marine Biology

34.

Rogers-Bennett, L, (2006) Elasticity analyses of size-based red and white abalone matrix models: management and conservation, Ecology Application

35.

Schaeffer, L.R, (1981) Comparison of single and multiple trait beef sire evaluations, Canadian Journal of Animal Science

36.

Sheridan,A.K, (1997) Genetic improvement of oyster production--a critique, Aquaculture

37.

Stroemgren, T, (1989) Heritability of growth in larvae and juvenile of Mytilus edulis, Aquaculture

38.

Su, G.-S, (1996) Genetic and environmental variation of body weight in rainbow trout (Oncorhynchus mykiss), Aquaculture

39.

Takami, H, (2006) Age determination and estimation of larval period in field caught abalone (Haliotis discus hannai Ino 1953) larvae and newly metamorphosed post-larvae by counts of radular teeth rows, Journal of Experimental Marine Biology and Ecology

40.

Toro, J.E, (1996) Spatial variation in response to selection for live weight and shell length from data on individually tagged Chilean native oysters (Ostrea chilensis Philippi, 1845), Aquaculture

41.

Viana, M.T, (2002) Abalone Aquaculture, An overview, World Aquaculture

42.

Zheng, H, (1819) Sustained response to selection in an introduced population of the hermaphroditic bay scallop Argopecten irradians irradians Lamarck (1819), Aquaculture

43.

이기만, (1998) 가축육종학, 향문사

logo