바로가기메뉴

본문 바로가기 주메뉴 바로가기

ACOMS+ 및 학술지 리포지터리 설명회

  • 한국과학기술정보연구원(KISTI) 서울분원 대회의실(별관 3층)
  • 2024년 07월 03일(수) 13:30
 

logo

메뉴

굴 Crassostrea gigas 유생의 먹이생물 섭취 크기

Ingestion size of food microalgae of the Pacific oyster Crassostrea gigas larvae

초록

유생의 발달크기에 따라 미세조류 12종에 대하여 섭취 가능성을 조사한 결과 유생의 크기에 따라 섭취 가능한 미세조류는 많은 차이를 보였다. 전체 유생크기에서 I. galban, I. aff. galbana, P. lutheri, C. ellipsoidea, N. oculata는 94.2-99.7%의 섭취율를 보였고, C. calcitrans, C. gracilis, C. simplex는 평균 각장 <TEX>$189.3{\pm}13.8{\mu}m$</TEX> 크기인 중형 각 정기 이후 90.0% 이상의 섭취율을 보였다. P. triconutum, D. tertiolecta, T. tetrathele는 평균 각장 <TEX>$65.0-100.0{\mu}m$</TEX>의 D형 유생은 섭취가 관찰되지 않았지만, 이후 유생에서는 각각 97.3-99.7%, 43.3-99.3%, 48.5-99.3% 섭취하였다. 그러나 T. weissflogii는 평균 각장 <TEX>$306.2{\pm}14.7{\mu}m$</TEX> 이상에서 1.0-1.7%의 섭취율을 보였지만, 전체 유생기동안 그의 섭취가 되지 않았다. 이상의 결과를 이용해 전체 50.0% 이상 섭취 가능한 먹이생물의 세포크기를 조사한 결과, 평균 각장 <TEX>$102.3{\mu}m$</TEX> 이하의 D형 단계는 장축과 단축 모두 <TEX>$4.6{\mu}m$</TEX> 이하, <TEX>$158.3{\mu}m$</TEX> 미만에서는 장축기준으로 <TEX>$9.3{\mu}m$</TEX> 미만까지 섭취가 가능하고, <TEX>$158.3{\mu}m$</TEX> 이상 크기는 단축 기준 <TEX>$9.3{\mu}m$</TEX>까지 섭취가 가능한 것으로 나타났다. 전제 유생기 동안 장축과 단축을 포함해서 <TEX>$10.0{\mu}m$</TEX> 이상은 섭취가 되지 않았다.

keywords
Ingestion size, Epifluorescence microscopy, oyster, Crassostrea gigas, microalgae, larval development

Abstract

유생의 발달크기에 따라 미세조류 12종에 대하여 섭취 가능성을 조사한 결과 유생의 크기에 따라 섭취 가능한 미세조류는많은 차이를 보였다. 전체 유생크기에서 I. galban, I. aff. galbana, P. lutheri, C. ellipsoidea, N. oculata는94.2-99.7%의 섭취율를 보였고, C. calcitrans, C. gracilis,C. simplex는 평균 각장 189.3 ± 13.8 μm 크기인 중형 각정기 이 후 90.0% 이상의 섭취율을 보였다. P. triconutum,D. tertiolecta, T. tetrathele는 평균 각장 65.0-100.0 μm의D형 유생은 섭취가 관찰되지 않았지만, 이 후 유생에서는 각각 97.3-99.7%, 43.3-99.3%, 48.5-99.3% 섭취하였다. 그러나 T. weissflogii는 평균 각장 306.2 ± 14.7 μm 이상에서1.0-1.7%의 섭취율을 보였지만, 전체 유생기동안 그의 섭취가되지 않았다. 이상의 결과를 이용해 전체 50.0% 이상 섭취 가능한 먹이생물의 세포크기를 조사한 결과, 평균 각장 102.3μm 이하의 D형 단계는 장축과 단축 모두 4.6 μm 이하,158.3 μm 미만에서는 장축기준으로 9.3 μm 미만까지 섭취가 가능하고, 158.3 μm 이상 크기는 단축 기준 9.3 μm까지섭취가 가능한 것으로 나타났다. 전제 유생기 동안 장축과 단축을 포함해서 10.0 μm 이상은 섭취가 되지 않았다.

keywords
Ingestion size, Epifluorescence microscopy, oyster, Crassostrea gigas, microalgae, larval development

참고문헌

1.

Abdel-Hamid, M.E., Mona, M.H., and Khalil, A.M. (1992) Effects of temperature, food and food concentrations on the growth of the larvae and spat of the edible oyster Crassostrea gigas (Thunberg). Journal of Marine Biology Association, 34: 195-202.

2.

Albentosa, M., Perez-Camacho, A., Labarta, U., Beiras, R. and Fernández-Reiriz, M.J. (1993) Nutritional value of algal diets to clam spat Venerupis pullastra. Marine Ecology Progress Service, 97: 261-269.

3.

Albentosa, M., Fernandez-Reiriz, M.J., Perez-Camacho, A. and Labarta, U. (1999) Growth performance and biochemical composition of Ruditapes decussatus (L.) spat fed on microalgal and wheatgerm flour diets. Journal of Experimental Marine Biology and Ecology, 232: 23-37

4.

Aldana-Aranda, D., Lucas, A., Brulé, T., Andrade, M., García, E., Maginot, N. and Le Pennec, M. (1991) Observations on ingestion and digestion of unicellular algae by Strombus gigas larvae (Mollusca, Gastropoda) using epifluorescence microscopy. Aquaculture, 92: 359-366.

5.

Aldana-Aranda, D., Patiño-Suárez, V. and Brulé, T. (1994) Ingestion and digestion of eight algae by Strombus gigas larvae (Mollusca, Gastropoda) Studied by epifluorescence microscopy. Aquaculture, 126: 151-158.

6.

Aldana-Aranda, D., Patiño-Suárez, V. and Brulé, T. (1997) Nutritional potentialities of Chlamydomonas coccoides and Thalassiosira fluviatilis, as measured by their ingestion and digestion rates by the Queen Conch larvae (Strombus gigas). Aquaculture, 156: 9-20.

7.

Babinchak, J. and Ukeles, R. (1979) Epifluorescence microscopy, a technique for the study of feeding in Crassostrea virgtnica veliger larvae. Marine Biology, 51: 69-76.

8.

Badillo-Salas, C.E., Valenzuela-Espinoza, E., González-Gómez, M.A., Pares-Sierra, G., Ley-Lou, F. and Garcia-Esquivel, Z. (2009) Comparative growth of Pacific oyster (Crassostrea gigas) postlarvae with microfeed and microalgal diets. Aquaculture International, 17: 173-186.

9.

Baldwin, B.S., Newell, R.I.E. (1991) Omnivorous feeding by planktotrophic larvae of the eastern oyster Crassostrea virginica. Marine Ecology Progress Service, 78: 285-301

10.

Baldwin, B.S. (1995) Selective particle ingestion by oyster larvae (Crassostrea virginica) feeding on natural seston and cultured algae. Marine Biology, 123: 95-107.

11.

Baldwin, B.S. and Newell, R.I.E. (1995) Feeding rate responses of oyster larvae (Crassostrea virginica) to seston quantity and composition. Journal of Experimental Marine Biology and Ecology, 189: 77–91.

12.

Bayne, B.L. (1983) Physiological ecology of marine molluscan larvae. In: Verdonk NH, eds, The Mollusca, vol. III. pp. 299-343. Academic Press. New York.

13.

Brown, M.R., Jeffrey, S.W., Volkman, J.K. and Dunstan, G.A. (1997) Nutritional properties of microalgae for mariculture. Aquaculture, 151: 315-331.

14.

Bruce, J.R., Knight, M. and Parke, M.W. (1940) The rearing of oyster larvae on an algal diet. Journal of the Marine Biological Association of the united Kingdom, 24: 337-374.

15.

Chrétiennot-Dinet, M.J., Vaulot, D., Galois, R., Spano, A.M. and Robert, R. (1991) Analysis of larval oyster grazing by flow cytometry. Journal of Shellfish Research, 10: 457-463.

16.

Cognie, B., Barillé, L. and Rincé, Y. (2001) Selective feeding of the oyster Crassostrea gigas fed on a natural microphytobenthos assemblage. Estuaries, 24: 126-131.

17.

Coutteau, P. and Sorgeloos, P. (1992) The use of algal substitutes and the requirement for live algae in hatchery and nursery rearing of bivalve molluscs: An international survey. Journal of Shellfish Research, 11: 467-476.

18.

Defossez, J.M. and Daguzan, J. (1996). About preferential ingestion of organic matter by bivalves. Journal of Molluscan Study, 62: 394-397.

19.

Devakie, M.N. and Ali A.B. (2000) Salinity-temperature and nutritional effects on the setting rate of larvae of the tropical oyster, Crassostrea iredalei (Faustino). Aquaculture, 184: 105-114.

20.

Enes, P. and Borges, M.T. (2003) Evaluation of microalgae and industrial cheese whey as diets for Tapes decussatus (L.) seed: effect on water quality, growth, survival, condition and filtration rate. Aquaculture Research, 34: 299-309

21.

Espinosa, E.P. and Allam, B. (2006) Comparative growth and survival of juvenile hard clams, Mercenaria mercenaria, fed commercially available diets. Zoo Biology, 25: 503-525

22.

Ewart, J.W. and Epifanio, C.E. (1981) A tropical flagellate food for larval and juvenile oysters, Crassostrea virginica Gmelin. Aquaculture, 22; 297-300.

23.

Fritz, L.W., Lutz, R.A., Foote, M.A., Van-Dover, C.L. and Ewart, J.W. (1984) Selective feeding and grazing rates of oyster (Crassostrea virginica) larvae on natural phytoplankton assemblages. Estuaries, 7: 513-518

24.

Gallager, S.M. (1988) Visual observations of particle manipulation during feeding in larvae of a bivalve mollusca. Bulletin of marine Science, 43: 344-365.

25.

Gerdes, D. (1983) The Pacific oyster Crassostrea gigas. Part I. Feeding behavior of larvae and adults. Aquaculture, 31: 195-219.

26.

Helm, M.M. and Millican, P.F. (1977). Experiments in the hatchery of Pacific oyster (Crassostrea gigas Thunberg). Aquaculture, 11: 1-12.

27.

His, E., Robert, R. and Dinet, A. (1989) Combined effects of temperature and salinity on fed and starved larvae of the Mediterranean mussel, Mytilus galloprovincialis and the Japanese oyster Crassostrea gigas. Marine Biology, 100: 455-463.

28.

Jørgensen, C.B. (1983) Fluid mechanical aspects of suspension feeding. Marine Ecology Progress Service, 11: 89-103.

29.

Labarbera, M. (1978) Particle capture by a Pacific brittle star: experimental test of the aerosol suspension feeding model. Science, 201: 1147-l149.

30.

Lemos, M.B.N., Nascimento, I.A., De Araujo, M.M.S., Pereira, S.A., Bahia, I. and Smith, D.H. (1994) The combined effects of salinity, temperature, antibiotics and aeration on larval growth and survival of the mangrove oyster, Crassostrea rhizophorae. Journal of Shellfish Research, 13: 187-192.

31.

Lucas, A. and Rangel, D.C. (1983). Detection of the first larval feeding in Crassostrea gigas, using epifluorescence microscope. Aquaculture, 30: 369-374.

32.

Martínez-Fernández, E., Acosta-Salmón, H. and Rangel-Dávalos, C. (2004) Ingestion and digestion of 10 species of microalgae by winged pearl oyster Pteria sterna (Gould, 1851) larvae. Aquaculture, 230: 417-423.

33.

Min, K.S., Kim, T.I,. Hur, S.B., Hur, Y.B., Park, D.W. and Lee. H.Y.M. (1999) Studies on the Artificial Spat Collection Method for the Pacific Oyster, Crassostrea gigas (Thunberg). Bulletin of national Fisheries Research and Development Institute, 57: 35-41.

34.

Moore, H.J. (1971) The structure of latero-frontal cirri on the gills of certain lamellibranch mollusca and their role in suspension feeding. Marine Biology, 11: 23-27.

35.

Møhlenberg, F. and Risgård, M.V. 1978. Efficiency of particle retention in 13 species of suspension feeding bivalves. Ophelia, 17: 239-246.

36.

Myers, J.A. and Boisvert, R.N. (1990) The economics of producing algae and bivalve seed in hatcheries. Aquaculture, 86: 163-179.

37.

Newell, R.I.E. and Jordan, S.J. (1983) Preferential ingestion of organic material by the American oyster, Crassostrea virginica. Marine Ecology Progress Service, 13: 47-53.

38.

Owen, G. (1974) Feeding and digestion in the bivalvia. In: Lowenstein O. ed, Advances in Comparative Physiology and Biochemistry, vol. 5. pp 1-35. Academic Press. New York. USA.

39.

Ponis, E., Robert, R., Parisi, G. and Tredici, M. (2003) Assessment of the performance of Pacific oyster (Crassostrea gigas) larvae fed with fresh and preserved Pavlova lutheri concentrates. Aquaculture International, 11: 69-79.

40.

Rico-Villa, B., Pouvreau, S. and Rovert, R. (2009) Influence of food density and temperature on ingestion, growth and settlement of Pacific oyster larvae, Crassostrea gigas. Aquaculture, 287: 395-401.

41.

Riisgård, H.U., Randlov, A. and Kristensen, P.S. (1980) Rates of water processing, oxygen consumption and efficiency of particle retention in veligers and young post-metamorphic MytiIus edulis. Ophelia, 19: 37-47.

42.

Riisgård, H.U. (1988) Feeding rates in hard clam (Mercenaria mercenaria) veliger larvae as a function of algal (Isochrysis galbana) concentration. Journal of Shellfish Research, 7: 377-380

43.

Robert, R. and Trintignac, P. (1997) Substitutes for live microalgae in mariculture: a review. Aquatic Living Resources, 10: 315-327.

44.

Shumway, S.E., Cucci, T.L., Newell, R.L. and Yentsch, C.M. (1985) Particle selection, Ingestion, and absorption in filter-feeding bivalves. Journal of Experimental Marine Biology and Ecology, 91: 77-92.

45.

Silverster, N.R. and Sleigh, M.A. (1984) Hydrodynamic aspects of particle capture by Mytilus. Journal of the Marine Biological Association of the united Kingdom, 64: 859-879.

46.

Sprung, M. (1984) Physiological energetics of mussel larvae (Mytilus edulis). II. Food uptake. Marine Ecology Progress Service, 17: 295-305.

47.

Strathmann, R.R. (1987) Larval feeding. In: Giese AC, Pearse JS, Pearse VB (eds) Reproduction of marine invertebrates. Vol. IX. General aspects: seeking unity in diversity. pp 465-550. Blackwell Scientific Publications. Palo Alto. California.

48.

Urban, E.R. and Langdon, C.J. (1984) Reduction in costs of diets for the American oyster, Crassostrea virginica (Gmelin), by the use of non-algal supplements. Aquaculture, 38: 277-291.

49.

Walne, P.R. (1974) Culture of bivalve molluscs. pp 173. The white friars Press Ltd. London and Tondridge.

50.

Wilson, J.H. (1980) Particle retention and selection by larvae and spat of Ostrea edulis in algal suspensions. Marine Biology, 57: 135-145.

51.

Wisely, B. and Reid, B. (1978) Experimental feeding of sydney rock oysters (Carssostrea commercialis = Saccostrea cucullata): Ⅰ. optimum particle sizes and concentrations. Aquaculture, 15: 319-331.

52.

Wright, R.T., Coffin, R.B., Ersing, C.P. and Person, D. (1982) Field and laboratory measurements of bivalve filtration of natural marine bacterioplankton. Limnology Oceanography, 27: 91-98.

logo