바로가기메뉴

본문 바로가기 주메뉴 바로가기

ACOMS+ 및 학술지 리포지터리 설명회

  • 한국과학기술정보연구원(KISTI) 서울분원 대회의실(별관 3층)
  • 2024년 07월 03일(수) 13:30
 

logo

메뉴

북방전복 Haliotis discus hannai에 대한 유해 적조생물 Karenia mikimotoi의 위해성 평가

Damage potential of Karenia mikimotoi to the farmed abalone spats Haliotis discus hannai

초록

K. mikimotoi 배양체 (<TEX>$7,500cells\;ml^{-1}$</TEX>) 를 3가지 형태 (ICS, intact cell suspension; BCS, broken cell suspension; CFE, cell-free elutriate) 로 조작하여 4개 농도구배 (0, 10, 50, 100%) 로 전복치패 H. discus hannai에 노출 (온도, 13, <TEX>$18^{\circ}C$</TEX>) 하여 그 위해성을 생존율로 평가하였다. 또한, 두 적조 배양체 (C. polykrikoides와 A. affine) 를 동일형태, 농도구배 (생체량 기준), 온도에서 비교실험 하였다. 결과, K. mikimotoi는 북방전복에 어느 정도 피해를 유발하였고 (p < 0.05, 0.01), 기존 연구결과와 비교분석하였을 때, 피해기작은 세포막을 중심으로 한 독력에 의한 접촉 피해일 가능성이 있었다. 종적 비교에서, A. affine가 유의성 없이 약간 유해했다. 그러나 K. mikimotoi 독성은 strain과 성장환경에 따라 달라지며, 또한 배양체와 자연체와의 차이가 있어 본 연구결과를 일반화하기 위해서는 추가 연구가 필요한 것으로 판단되었다. 특히, 이 연구에서 실험구의 폐사시점이 대조구와 일치한다는 점에서 실험구 결과에 사육 스트레스가 부가되었음을 추측할 수 있었고, 이점은 향후 연구에서 고려할 사항으로 생각된다.

keywords
Karenia mikimotoi, Damage potential, Haliotis discus hannai

Abstract

Karenia mikimotoi bloom is known to damage abalones via chemical toxicity, but the toxic mechanism remains unclear. In an attempt to gain an insight into its damage potential to abalone spats Haliotis discus hannai, the spats were exposed to 0, 10, 50, or 100% of 7,500 cells ml-1 K. mikimotoi in types of ICS (intact cell suspension), BCS (broken cell suspension) or CFE (cell-free elutriate) at 13 and 18℃, respectively. The spats were also exposed to corresponding type and dilution of 7,500 cells ml-1 Cochlodinium polykrikoides and 2,000 cells ml-1 Alexandrium affine which were equivalent to 7,500 cells ml-1 K. mikimotoi on the basis of TOC (total organic carbon). K. mikimotoi was proved to be damageable to the spats with damage potential not bigger than A. affine and C. polykrikoides. In algal type, ICS was most influential, particularly in lower dilutions (with an occasional significance of p < 0.01 or p < 0.05), suggesting that toxicity potential might be more associated with intact cell membrane. Overall, the spat damages of experimental trials were in concurrence with those of controls which were solely due to culture stress, suggesting that the culture stress might be an additional parameter influencing the spat damage and thus should be countered into consideration in future study.

keywords
Karenia mikimotoi, Damage potential, Haliotis discus hannai

참고문헌

1.

Arzul, G., Gentien, P. and Crassous, M.P. (1994) A haemolytic test to assay toxins excreted by the marine dinoflagellate Gyrodinium cf. aureolum. Water Research, 28: 961-965.

2.

Anderson, D.M., Alpermann, T.J., Cembella, A.D., Collos, Y., Masseret, E. and Montresor, M. (2012) The globally distributed genus Alexandrium: Multifaceted roles in marine ecosystems and impacts on human health. Harmful Algae, 14: 10-35.

3.

Baden, D.G. (1989) Brevetoxins: unique polyether dinoflagellate toxins. Federation of American Societies for Experimental Biology, 3:1807-1817.

4.

Botes, L., Smit, A.J. and Cook, P.A. (2003) The potential threat of algal blooms to the abalone (Haliotis midae) mariculture industry situated around the South African coast. Harmful Algae, 2: 247-259.

5.

Bourdelais, A.J., Jacocks H.M., Wright, J.L., Bigwarfe, P.M. Jr. and Baden, D. G. (2005) A new polyether ladder compound produced by the dinoflagellate Karenia brevis. Journal of Natural Products, 68: 2-6.

6.

Brand, L.E., Campbell, L. and Bresnan, E. (2012) Karenia: The biology and ecology of a toxic genus. Harmful Algae, 14: 156-178.

7.

Basti, L., Nagai, L., Go, J., Okano, S., Nagai, K., Watanabe, R., Suzuk, T. and Tanaka, Y. (2015) Differential inimical effects of Alexandrium spp. and Karenia spp. on cleavage, hatching, and two larval stages of Japanese pearl oyster Pinctada fucata martensii. Harmful Algae, 43: 1-12

8.

Catterall, M.G. and Gainer, M. (1985) Interaction of brevetoxin A with a new receptor site on the sodium channel. Toxicon, 23: 497-504.

9.

Chen Y., Yan, T., Yu, R. and Zhou, M. (2011) Toxic effects of Karenia mikimotoi extracts on mammalian cells. Chinese Journal of Oceanology and Limnology, 29: 860-868.

10.

Horstman, D.A, McGibbon, S., Pitcher, G.C., Calder, Hutchings, L. and Williams, P. (1991) Red tides in False Bay, 1959-1989, with particular reference to recent blooms of Gymnodinium sp. Transactions of the Royal Society of South Africa, 47: 611-628.

11.

HE, D., Liu, J, HAO, Q., Ran, L., Zhou, B., and Tang, X., (2016) Interspecific competition and allelopathic interaction between Karenia mikimotoi and Dunaliella salina in laboratory culture. Chinese Journal of Oceanology and Limnology, 34: 301-313.

12.

Kimura, K., Okuda, , S., Nakayama, K., Shikata, T., Takahashi, F., Yamaguchi, H., Skamoto, S., Yamaguchi, M. and Tomaru, Y. (2015) RNA Sequencing Revealed Numerous Polyketide Synthase Genes in the Harmful Dinoflagellate Karenia mikimotoi. PLOS ONE, 10: e0142731.

13.

Lin, J.N. (2015) The Field and Experimental Research of Detrimental Effects of HABs in the East China Sea. The University of Chinese Academy of Sciences. (in Chinese)

14.

Li, X., Yan, T., Lin, J., Yu, R. and Zhou, M. (2017) Detrimental impacts of the dinoflagellate Karenia mikimotoi in Fujian coastal waters on typical marine organisms. Harmful Algae, 61: 1-12.

15.

Matsuyama, Y., Koisumi, Y. and Uchida, T. (1998) Effect of harmful phytoplankton on the survival of the abalones, Haliotis discus and Sulculus diversicolor. Bulletin of the Nansei National Fisheries Research Institute, 31: 19-24.

16.

ME, (2017) Water pollution process test standard. Ministry of Environment, Korea. pp. 260. (in Korean)

17.

Mooney, B.D., Nichols, P.D., De Salas, M.F. and Hallegraeff, G.M. (2007) Lipid, fatty acid, and sterol composition of eight species of Kareniaceae (Dinophyta): Chemotaxonomy and putative lipid phycotoxins. Journal of Phycology, 43: 101-111.

18.

Neely, T. and Campbell, L. (2006) A modified assay to determine hemolytic toxin variability among Karenia clones isolated from the Gulf of Mexico. Harmful Algae, 5: 592-598.

19.

Poli, M.A., Mende, T.J., Baden, D,G. (1986) Brevetoxins, unique activators of voltage-sensitive sodium channels, bind to specific sites in rat brain synaptosomes. Molecular Pharmacology, 30: 129-135.

20.

Parrish, C.C., Bodennee, G. and Gentien, P. (1994) Time courses of intracellular and extracellular lipid classes in batch cultures of the toxic dinoflagellate, Gymnodinium cf. nagasakiense. Marine Chemistry, 48: 71-82.

21.

Prince, L.R., Graham, K.J., Connolly, J., Anwar, S., Ridley, R., Sabroe, I., Foster, S.J. and Whyte, M.K. (2012) Staphylococcus aureus Induces Eosinophil Cell Death Mediated by <TEX>${\alpha}$</TEX>-hemolysin. PLOS ONE, 7: e31506.

22.

Sawada, S. and Wada, Y. (1983) Several examination of a Gymnodinium sp. Type 65 red tide occurred in Uwa Sea on resistibility of fish and shellfish. Reports on the Assessments of Red Tide Prediction, Fishery Agency of Japan. p. 131-140 (in Japanese).

23.

Shimizu, Y., Chou, H.N. and Bando, H. (1986) Structure of brevetoxin A (GB-1 toxin), the most potent toxin in the Florida red tide organism Gymnodinium breve (Ptychodiscus brevis). Journal of the American Chemical Society, 108: 514-515.

24.

Smolowitz, R. and Shumway, S.E. (1997) Possible cytotoxic effects of the dinoflagellate, Gyrodinium aureolum, on juvenile bivalve molluscs. Aquaculture International, 5: 291-300.

25.

Satake, M., Shoji, M., Oshima, Y., Naoki, H., Fujita, T. and Yasumoto, T. (2002) Gymnocin-A, a cytotoxic polyether from the notorious red tide dinoflagellate, Gymnodinium mikimotoi. Tetrahedron Letters, 43: 5829-5832.

26.

Satake, M., Yoshihisa, T., Ishikura, Y., Naoki, H. and Yasumoto, T. (2005) Gymnocin-B with the largest contiguous polyether rings from the red tide dinoflagellate, Karenia (formerly Gymnodinium) mikimotoi. Tetrahedron Letters, 46: 3537-3540.

27.

Steidinger, K.A. (2009) Historical perspective on Karenia brevis red tide research in the Gulf of Mexico. Harmful Algae, 8: 549-561.

28.

Sun, K., Yan, T., Zhou, M. and Ho, K.C. (2010) Effect of Karenia mikimotoi on the survival of rotifer Brachionus plicatilis, brine shrimp Artemia salina and Neomysis awatschensis. Marine Sciences, 34: 76-81.

29.

Shi, F., McNabb, P., Rhodes, L., Holland, P., Webb, S., Adamson, J., Immers, A., Gooneratne, R. and Holland, J. (2012) The toxic effects of three dinoflagellate species from the genus Karenia on invertebrate larvae and finfish. New Zealand Journal of Marine and Freshwater Research, 46: 149-165.

30.

Van Wagoner, R.M., Satake, M., Bourdelais, A.J., Baden, D.G. and Wright, J.L.C (2010) Absolute configuration of brevisamide and brevisin: confirmation of a universal biosynthetic process for Karenia brevis polyethers. Journal of Natural Products, 73: 1177-9.

31.

Zhou, C.X., Fu, Y.J., Yan, X.J. (2007) Hemolytic activity studies of several harmful alga strains (in Chinese). Asian Journal of Ecotoxicology, 2: 78-82.

32.

Zou, J. and Wei, X. (2010) Transplantation of GFP-expressing Blastomeres for Live Imaging of Retinal and Brain Development in Chimeric Zebrafish Embryos. Journal of Visualized Experiments, 41: e1924.

33.

Zhang, Y., Yang, W., Li, H. and Liu, J. (2011) Toxicity Analysis of Karenia mikimotoi to Moina mongolica. Asian Journal of Ecotoxicology, 6: 94-98.

logo