ISSN : 1226-0657
We introduce the concepts of intuitionistic fuzzy submodules and intuitionistic fuzzy weak congruences on an R-module (Near-ring module). And we obtain the correspondence between intuitionistic fuzzy weak congruences and intuitionistic fuzzy submodules of an R-module. Also, we define intuitionistic fuzzy quotient R-module of an R-module over an intuitionistic fuzzy submodule and obtain the correspondence between intuitionistic fuzzy weak congruences on an R-module and intuitionistic fuzzy weak congruences on intuitionistic fuzzy quotient R-module over an intuitionistic fuzzy submodule of an R-module.
Let R be a prime ring with characteristics not 2 and <TEX>${\sigma},\;{\tau},\;{\alpha},\;{\beta}$</TEX> be auto-morphisms of R. Suppose that <TEX>$d_1$</TEX> is a (<TEX>${\sigma},\;{\tau}$</TEX>)-derivation and <TEX>$d_2$</TEX> is a (<TEX>${\alpha},\;{\beta}$</TEX>)-derivation on R such that <TEX>$d_{2}{\alpha}\;=\;{\alpha}d_2,\;d_2{\beta}\;=\;{\beta}d_2$</TEX>. In this note it is shown that; (1) If <TEX>$d_1d_2$</TEX>(R) = 0 then <TEX>$d_1$</TEX> = 0 or <TEX>$d_2$</TEX> = 0. (2) If [<TEX>$d_1(R),d_2(R)$</TEX>] = 0 then R is commutative. (3) If(<TEX>$d_1(R),d_2(R)$</TEX>) = 0 then R is commutative. (4) If <TEX>$[d_1(R),d_2(R)]_{\sigma,\tau}$</TEX> = 0 then R is commutative.
This paper introduces a class of multivalued mixed quasi-variational-like ineqcalities and shows the existence of solutions to the class of quasi-variational-like inequalities in reflexive Banach spaces.
Using more precise majorizing sequences than before [6], [10], [11], [14] we provide a finer semilocal convergence analysis for a certain class of Euler-Halley type methods for approximating a solution of an equation in a Banach space setting.
We consider the nonrelativistic limit for the radial solutions to the self-dual equations in the self-dual Abelian Chern-Simons model. We achieve the limit by fixing the common maximum value of solutions.
The purpose of this paper is to establish a random fixed point theorem for nonconvex valued random multivalued operators, which generalize known results in the literature. We also derive a random coincidence fixed point theorem in the noncompart setting.
In this paper we solve the Hyers-Ulam stability problem for quadratic functional equations on restricted domains, and then obtain an asymptotic behavior of quadratic mappings on restricted domains.