Article Detail

Home > Article Detail
  • P-ISSN 1225-0163
  • E-ISSN 2288-8985

Effect of the far infrared irradiated water on the growth of the cotyledons, hypocotyls and roots of the spring radishes

Analytical Science and Technology / Analytical Science and Technology, (P)1225-0163; (E)2288-8985
2009, v.22 no.4, pp.277-284

  • Downloaded
  • Viewed

Abstract

The germination rate of radishes grown with the far infrared irradiated water and drinking water was 100% and 78% respectively. The far infrared irradiated water stimulated the cell division of the cotyledons and enlarged the cell sizes both in the dark and in the light. In the dark and light conditions, the size of the cotyledons of transversal axis and longitudinal axis grown with the far infrared irradiated water was bigger than that grown with the drinking water. The content of chlorophyll and the consumption of CO₂ of the cotyledons grown with the far infrared irradiated water were higher, respectively. Osmotic pressure of the cotyledons grown with the far infrared irradiated water was 1.25 factors higher than that grown with the drinking water. The water potential of the cotyledons grown with the far infrared irradiated water was more negative value. The length of hypocotyls grown with the far infrared irradiated water was 2.18 factors longer in the dark, 1.99 factors longer in the light than that grown with the drinking water and the radish roots grown with the far infrared irradiated water were larger, respectively.

keywords
Far infrared irradiated water, cotyledon, hypocotyl, root, water potential


Reference

1

1. J. A. Bunce, D. T. Patterson, M. M. Pect and R. S. Albert, Plant Physiol. 60, 255-258(1970).

2

2. R. M. Mireckl and A. H. Teramura, Plant Physiol. 74, 475-480(1984).

3

3. C. F. Atkinson, Sci. 7, 7-12 (1989).

4

4. S. C. Sheppard and W. G. Evenden, Ca. J. Plant Sci. 66, 431-435(1986).

5

5. E. K. Lee, J. S. Kim, Y. K. Lee, and Y. B. Lee, J. Kor. Soc. Horticultural Sci. 39, 670-675(1998).

6

6. J. S. Kim, E. K. Lee, J. Y. Song, H. G. Kim and Y. B. Lee, Kor. J. Environ. Biol. 16, 47-51(2000).

7

7. J. S. Kim, E. K. Lee, M. H. Back, D. H. Kim and Y. B. Lee, Kor. J. Eviron. Biol. 19, 58-61(2000).

8

8. J. H. An, J. S. Kim, J. H. Jeong, S. M. Oh and S. T. Kwon, Kor. J. Plant Biotech. 30, 201-206(2003).

9

9. H. Y. Kim, I. J. Lee, D. H. Shin and K. U. Kim, Kor. J. Life Sci. 8, 272-278(1998).

10

10. S. Stan, A. C. Croitoru, Stim Newl. 1, 23-25(1970).

11

11. I. S. Lee, D. S. Kim, S. J. Lee, H. S. Song, Y. P. Lim and Y. I. Lee, Kor. J. Plant Biotech. 30, 19-25(2003).

12

12. 정구영, 백우현, 윤천기, 한국환경과학회지, 9, 423- 429(2000).

13

13. 진갑덕, 이신웅, 이수근, 자원문제연구소, 5, 55- 68(1986).

14

14. 정구영, 백우현, 대한온열종양학회, 3, 51-58(1998).

15

15. 백우현, 대한온열종양학회, 1, 61-67(1996).

16

16. 박종욱, 최태섭, 조명, 전기설비학회지, 135, 32- 40(1999).

17

17. 조봉희, 한국분석과학회지, 21, 279-283(2008).

18

18. E. S. Knipling, Ecology, 48, 1038-1041(1967).

19

19. R. O. Slater, Annu. Rev, Plant Physiol. 13, 351- 378(1962).

20

20. C. W. Ross, Plant Physiology Laboratory Manual, Wadsworth, Pub. Comp. Inc. Belmount, California, 96- 98(1974).

21

21. P. Lampman, K. Vyvyan, Introduction to spectroscopy, Brooks/Cole, Cengage Learning, 49(2009).

상단으로 이동

Analytical Science and Technology