Article Detail

Home > Article Detail
  • P-ISSN 1225-0163
  • E-ISSN 2288-8985

Determination of trace boron in steels by prompt gamma-ray activation analysis

Analytical Science and Technology / Analytical Science and Technology, (P)1225-0163; (E)2288-8985
2009, v.22 no.4, pp.302-306


R. L. Paul (National Institute of Standards and Tdchnology)
  • Downloaded
  • Viewed

Abstract

A trace amount of boron in steel significantly influences its mechanical and physical properties. A prompt gamma ray activation analysis (PGAA) method is used to measure boron in low alloy steel samples of KRISS 101-01-C21~C26. NIST SRMs of 362, 364, 1761 and 1767 serve as the control standards to validate the measurement method. The measured values of the NIST SRMs are consistent with their certified values within the expected uncertainties, except for that of NIST SRM 362. Experimental uncertainties are evaluated according to the guidelines given by the International Organization for Standardization (ISO). The expanded uncertainties are calculated with a coverage factor of 2, at approximately 95% confidence level. The calculated relative expanded uncertainties of boron mass fractions are between 3% and 7% at the mg/kg level. The results are compared with the results measured by the solvent extraction-inductively coupled optical emission spectrometry (ICP/OES) method.

keywords
Prompt gamma-ray activation analysis, boron, low alloy steel, certified reference material, uncertainty


Reference

1

1. E. Yasuhara, K. Sakata, and O. Hashimoto, ISIJ Int., 34, 99-107(1994).

2

2. S. Okubo, Hagane No Ohanashi, Nihon Kikaku Kyoukai, Tokyo, Japan, 1999.

3

3. D. Michael, and T. Robert, At. Spectrosc., 17, 128-132 (1996).

4

4. K. Yamada, O. Kujirai, and R. Hasegawa, Anal. Sci., 9, 385-390(1993).

5

5. K. Fujimoto, M. Shimura, and K. Yoshioka, Tetsu-tohagane, 85, 114-118(1999).

6

6. A. G. Coedo, T. Dorado, B. J. Fernandez, and F. J. Alguacil, Anal. Chem., 68, 991-996(1996).

7

7. C. J. Park, Bull. Korean Chem. Soc. 23, 1541-1544 (2002).

8

8. N. Uehara, K. Yamaguchi, and T. Shimizu, Anal. Sci., 17, 1421-1424(2001).

9

9. J. E. Riley, Jr, and R. M. Lindstrom, J. Radioanal. Nucl. Chem., 109, 109-115(1987).

10

10. S. Baechler, P. Kudejova, J. Jolie, J.-L. Schenker, and N. Stritt, Nucl. Instr. and Meth, A488, 410-413(2002).

11

11. S. H. Byun, G. M. Sun, and H. D. Choi, Nucl. Instr. and Meth., B213, 535-539(2004).

12

12. Certificate of Analysis, Standard Reference Material 951 Boric Acid, National Bureau of Standards, Washington, D.C., 1969.

13

13. M. D. Dyar, M. Wiedenbeck, D. Robertson, L. R. Cross, J. S. Delaney, K. Ferguson, C. A. Francis, E. S. Grew, C. V. Guidotti, R. L. Hervig, J. M. Hughes, J. Husler, W. Leeman, A.V. McGuire, D. Rhede, H. Rothe, R. L. Paul, I. Richards, and M. Yates, Geostandards Newsletter, 25, 441- 463(2001).

14

14. C. Yonezawa, P. P. Ruska, H. Matsue, M. Magara, and T. Adachi, J. Radioanal. Nucl. Chem., 239, 571-575 (1999).

15

15. D. L. Anderson, W. C. Cunningham, and E. A. Mackey. Fresenius J. Anal. Chem., 338, 554-558(1990).

16

16. R. L. Paul, Analyst 130, 99-103(2005).

17

17. Y. Sakai, C. Yonezawa, M. Magara, H. Sawahata, and Y. Ito, Nucl. Instr. and Meth., A353, 699-701(1994).

18

18. R. F. Fleming, Int. J. Appl. Radiat. Isot., 33, 1263-1268 (1982).

19

19. K. Debertin, R.G. Helmer, Gamma- and X-Ray Spectrometry with Semiconductor Detectors, Elsevier Science Publisher B.V., Amsterdam, 1988.

20

20. A. Wyttenbach, J. Radioanal. Nucl. Chem., 8, 335-343 (1971).

21

21. Guide to the Expression of Uncertainty in Measurement, 1st ed., ISO, Switzerland, 1993.

22

22. R. M. Lindstrom, Report of Analysis 86/551/NUCLM/ 098, National Institute of Standards and Technology, Gaithersburg, MD, USA, 1986.

23

23. I. Mills, T. Cvitas, K. Homann, N. Kallay, and K. Kuchitsu, Quantities, Units and Symbols in Physical Chemistry, 2nd ed., Blackwell Science, Victoria, Australia, 1993.

상단으로 이동

Analytical Science and Technology