- P-ISSN 1225-0163
- E-ISSN 2288-8985
철강 중의 미량 붕소는 소재의 기계적, 물리적 특성에 중요한 영향을 준다. 즉발감마선 방사화 분석법에 의해 저합금강 시료 중의 미량 붕소를 측정하였다. 시료는 한국표준과학연구원에서 제조한 저합금강 표준물질KRISS 101-01-C21~C26을 이용하였으며, 측정방법의 유효성 확인을 위해 NIST SRM 362, 364, 1761, 1762를 정확도관리용 시료로 사용하였다. NIST SRM 362를 제외하고는 측정 농도가 인증값의 불확도 범위내에서 잘 일치하였다. 불확도는 ISO guideline에 따라 평가하였으며, 포함인자 2를 적용하여 확장불확도를 산출하였다. 붕소 농도 mg/kg수준에서 상대확장불확도는 3%에서 7% 사이였다. 그 결과를 용매추출-유도결합플라스마 방출분광분석결과와 비교하여 제시하였다.
A trace amount of boron in steel significantly influences its mechanical and physical properties. A prompt gamma ray activation analysis (PGAA) method is used to measure boron in low alloy steel samples of KRISS 101-01-C21~C26. NIST SRMs of 362, 364, 1761 and 1767 serve as the control standards to validate the measurement method. The measured values of the NIST SRMs are consistent with their certified values within the expected uncertainties, except for that of NIST SRM 362. Experimental uncertainties are evaluated according to the guidelines given by the International Organization for Standardization (ISO). The expanded uncertainties are calculated with a coverage factor of 2, at approximately 95% confidence level. The calculated relative expanded uncertainties of boron mass fractions are between 3% and 7% at the mg/kg level. The results are compared with the results measured by the solvent extraction-inductively coupled optical emission spectrometry (ICP/OES) method.
1. E. Yasuhara, K. Sakata, and O. Hashimoto, ISIJ Int., 34, 99-107(1994).
2. S. Okubo, Hagane No Ohanashi, Nihon Kikaku Kyoukai, Tokyo, Japan, 1999.
3. D. Michael, and T. Robert, At. Spectrosc., 17, 128-132 (1996).
4. K. Yamada, O. Kujirai, and R. Hasegawa, Anal. Sci., 9, 385-390(1993).
5. K. Fujimoto, M. Shimura, and K. Yoshioka, Tetsu-tohagane, 85, 114-118(1999).
6. A. G. Coedo, T. Dorado, B. J. Fernandez, and F. J. Alguacil, Anal. Chem., 68, 991-996(1996).
7. C. J. Park, Bull. Korean Chem. Soc. 23, 1541-1544 (2002).
8. N. Uehara, K. Yamaguchi, and T. Shimizu, Anal. Sci., 17, 1421-1424(2001).
9. J. E. Riley, Jr, and R. M. Lindstrom, J. Radioanal. Nucl. Chem., 109, 109-115(1987).
10. S. Baechler, P. Kudejova, J. Jolie, J.-L. Schenker, and N. Stritt, Nucl. Instr. and Meth, A488, 410-413(2002).
11. S. H. Byun, G. M. Sun, and H. D. Choi, Nucl. Instr. and Meth., B213, 535-539(2004).
12. Certificate of Analysis, Standard Reference Material 951 Boric Acid, National Bureau of Standards, Washington, D.C., 1969.
13. M. D. Dyar, M. Wiedenbeck, D. Robertson, L. R. Cross, J. S. Delaney, K. Ferguson, C. A. Francis, E. S. Grew, C. V. Guidotti, R. L. Hervig, J. M. Hughes, J. Husler, W. Leeman, A.V. McGuire, D. Rhede, H. Rothe, R. L. Paul, I. Richards, and M. Yates, Geostandards Newsletter, 25, 441- 463(2001).
14. C. Yonezawa, P. P. Ruska, H. Matsue, M. Magara, and T. Adachi, J. Radioanal. Nucl. Chem., 239, 571-575 (1999).
15. D. L. Anderson, W. C. Cunningham, and E. A. Mackey. Fresenius J. Anal. Chem., 338, 554-558(1990).
16. R. L. Paul, Analyst 130, 99-103(2005).
17. Y. Sakai, C. Yonezawa, M. Magara, H. Sawahata, and Y. Ito, Nucl. Instr. and Meth., A353, 699-701(1994).
18. R. F. Fleming, Int. J. Appl. Radiat. Isot., 33, 1263-1268 (1982).
19. K. Debertin, R.G. Helmer, Gamma- and X-Ray Spectrometry with Semiconductor Detectors, Elsevier Science Publisher B.V., Amsterdam, 1988.
20. A. Wyttenbach, J. Radioanal. Nucl. Chem., 8, 335-343 (1971).
21. Guide to the Expression of Uncertainty in Measurement, 1st ed., ISO, Switzerland, 1993.
22. R. M. Lindstrom, Report of Analysis 86/551/NUCLM/ 098, National Institute of Standards and Technology, Gaithersburg, MD, USA, 1986.
23. I. Mills, T. Cvitas, K. Homann, N. Kallay, and K. Kuchitsu, Quantities, Units and Symbols in Physical Chemistry, 2nd ed., Blackwell Science, Victoria, Australia, 1993.