- P-ISSN 1225-0163
- E-ISSN 2288-8985
본 연구는 칼럼 전 유도체화와 HPLC-형광검출을 이용해 염소 소독 음용수 중 7가지 nitrosamine 화합물을 분석하는 방법을 추출 과정(액-액 추출 vs. 고상 추출)과 형광 유도체화 과정(denitrosation 및dansylation)으로 나누어 평가하여 확립하였다. 최적화된 유도체화 방법으로 두 가지의 추출법을 비교하였을 때, Ambersorb 572를 이용한 고상 추출에 대한 회수율과 재현성(상대표준편차, RSD)이 각각 54.4-88.7%와 1.9-19.4%로 액-액 추출의 51.4-87.7%와 4.2-33.3%에 비해 더 좋게 나타났다. 확립된 방법은 기존의 HPLC를 이용한 분석 방법에 비해 회수율과 재현성 모두 개선되었으며, 방법검출한계(method detection limits, MDLs)는 0.5-4.4 ng/L이었다. 이 방법으로 춘천의 염소로 소독하는 두 곳의 정수장과 10 곳의 수도꼭지에서 채취한 물 시료 중 nitrosamine 화합물을 분석한 결과, N-nitrosodimethylamine (NDMA)이 주요 화합물이었으며, 농도 범위는 26.1-112 ng/L이었다.
This study was conducted to establish an analytical method for the determination of seven nitrosamines in chlorinated tap water by precolumn derivatization followed by high performance liquid chromatography coupled with fluorescence detection. The derivatization procedure was optimized for denitrosation and dansylation, and then two extraction methods, liquid-liquid extraction (LLE) with dichloromethane and solid phase extraction (SPE), were compared. The SPE method employing the optimized derivation procedure showed higher extraction recovery (54.4-88.7%) and reproducibility (1.9-19.4%) than the LLE method (51.4-87.7% and 4.2-33.3%, respectively). The method detection limits were between 0.5 and 4.4 ng/L. When chlorinated water samples were collected from two treatment plants and ten household taps, and analyzed for nitrosamines, Nnitrosodimethylamine (NDMA) was the major compound found between 26.1 and 112 ng/L.
1. International Agency for Research on Cancer (IARC). “IARC Monographs on the Evaluation of the Carcinogenic Risk of Chemicals to Humans: Some N-nitroso compounds”, 1978.
2. US EPA, Integrated Risk Information System, Office of Research and Development (ORP), National Center for Environmental Assessment, http://www.epa.gov/iris.
3. J. E. Graham, S. A. Andrews, G. J. Farquhar and O. Meresz, Water quality technology conference, AWWA, New Orleans, LA, pp. 757-772(1995).
4. I. Najm and R. R. Trussell, J. Am. Water Works Assoc. 93, 92-99(2001).
5. J. Choi and R. L. Valentine, Water Res. 36, 817-824(2002).
6. A. C. Gerecke and D. L. Sedlak, Environ. Sci. Technol. 37, 1331-1336(2003).
7. W. A. Mitch and D. L. Sedlak, Environ. Sci. Technol. 36, 588-595(2002).
8. California Department of Health and Services, “NDMA in California Drinking Water”, http://www/dhs.ca.gov/ ddwem.chemiclas/NDMA/history.htm.
9. W. Mitch, J. Sharp, R. Trussell, R. Valentine, L. Alvarez- Cohen and D. Sedlak, Environ. Eng. Sci., 20, 389-404 (2003).
10. US EPA, “Determination of nitrosamines in drinking water by solid phase extraction and capillary column gas chromatography with large volume injection and chemical ionization tandem mass spectrometry (MS/ MS)”, U.S. EPA Method 521, 2004.
11. S. W. D. Jenkins, C. J. Koester, V. Y. Taguchi, D. T. Wang, J.-P. F. P. Palmentier and K. P. Hong, Environ. Sci. Pollut. Res. 2, 207-210(1995).
12. W. S. Cha, P. Fox and B. Nalinakumari, Analytica Chimica Acta., 566, 109-116(2006).
13. J. W. A. Charrois, M. W. Arend, K. L. Froese and S. E. Hrudey, Environ. Sci. Technol., 38, 4835-4841(2004).
14. Y.-Y. Zhao, J. Boyd, S. E. Hrudey and X.-F. Li, Environ. Sci. Technol., 40, 7636-7641(2006).
15. R. C. Cheng, C. Andrews-Tate, C. J. Hwang, Y. Guo, J. E. Gredel and I. H. Suffet, Water Quality Technology Conference Proceedings, American Water Works Association, Denver, CO., 2004.
16. S. S. Hecht, R. M. Ornaf and D. Hoffmann, Anal. Chem. 47, 2046-2048(1975).
17. Z. Wang, H. Xu and C. Fu, J. Chromatogr, 589, 349- 352(1992).
18. N. V. Komarova and A. A. Velikanov, Anal. Chem., 56(4), 359-363(2001).
19. J. W. A. Charrios, J. M. Boyd, K. L. Froese and S. E. Hrudey, J. Environ. Eng. Sci., 6, 103-114(2007).