- P-ISSN 1225-0163
- E-ISSN 2288-8985
호박유물의 적절한 보존방안 마련에 필요한 호박의 화학적 분광학적 특성을 Infrared (IR) 분석과pyrolysis/GC/MS (py/GC/MS) 분석을 통해 조사하였다. 호박 시료는 Baltic, Chiapas, Colombian, Dominican,Fushun, Madagascar 호박 등 6개의 산지에서 총 14종을 확보하였다. 시료의 비파괴적 조사를 위해 IR 분석을 실시하였고, 고분자 구성 성분 조사를 위해 py/GC/MS를 300 ℃ 열분해 온도에서 온라인trimethylsilylation을 통하여 분석하였다. IR 분석에서는 대체적으로 산지에 관계없이 유사한 스펙트럼을보였으나, 지문영역에서는 Baltic 호박의 경우 Baltic shoulder에 해당하는 1250 cm^(−1)~ 1150 cm^(−1)에서 흡수가 나타나는 등 각각의 산지별로 구분이 가능한 차별화된 IR 스펙트럼이 관찰되었다. py/GC/MS 분석에서는 succinic acid, pimaric acid 등 호박의 구성성분으로 알려진 물질들이 검출되었고, Baltic, Chiapas,Fushun 호박의 경우 산지 구분이 가능한 특정성분이 검출되었다. 이러한 결과는 발견 및 발굴 유물에서호박을 확인하거나, 산지 및 제작기술 추정 등 고고과학적인 해석의 기초 자료로 활용될 수 있을 것으로기대된다.
Ambers have been used as a gemstone and a religious object since the ancient times and found in several archaeological sites in Korea. To prepare an enhanced conservation measures, we surveyed the chemical and spectroscopic properties of the ambers according to the provenance. Total 14 amber samples were collected from 6 different provenances including Baltic, Chiapas, Colombian, Dominican, Fushun and Madagascar amber. Infrared (IR) spectroscopic analysis was conducted for the non-destructive examination of the amber samples. They were also analyzed with pyrolysis/GC/MS (py/GC/MS) at the pyrolysis temperature of 300 ℃ with the on-line derivatization to trimethylsilyl ester. Baltic shoulder corresponding to the absorption at 1250 cm^(−1)~ 1150 cm^(−1) appeared in the IR spectrum of Baltic amber. IR spectra of the other ambers also showed somewhat distinctive characteristic peaks. In py/GC/MS analysis peaks assignable to succinic acid,dehydroabietic acid and pimaric acid were detected, which are known to be the components of the amber. In the meanwhile, the presence of compounds appearing in certain amber will be applied to differentiate the provenances of amber relics if their fragments are available for the analysis. These results are expected to help the confirmation of archaeological amber relics and archaeometric interpretation of provenances and manufacturing techniques.
1. M. Villanueva-García, A. Martínez-Richa and J. Robles, ARKIVOC. 449-458 (2005).
2. K. B. Anderson and W. Bray, Archaeometry, 48(4), 633-640 (2006).
3. M. Guiliano, L. Asia, G. Onoratini and G. Mille, Spectrochimica Acta Part A, 67, 1407-1411 (2007).
4. E. Peñalver, E. Álvarez-Fernández, P. Arias, X. Delclòs and R. Ontañón, J. Archaeological Sci., 34, 843-849 (2007).
5. I. Angelini and P. Bellintani, Archaeometry, 47(2), 441-454 (2005).
6. A. Matuszewska and A. John, Acta Chromatographica, 82-91 (2004).
7. N. Ueda: Proceedings of The 32th Autumn International Conference of the Korean Society of Conservation Science of Cultural Heritage, 199-202 (2010).
8. E. S. Teodor, E. D. Teodor, M. Virgolici, M. M. Manea, G.. Truica and S. C. Litescu, J. Archaeological Sci., 37, 2386-2396 (2010).
9. L. Carlsen, A. Feldthus, T. Klarskov and A. Shedrinsky, J. Analytical and Applied Pyrolysis, 43, 71-81 (1997).
10. G. C. Galletti and R. Mazzeo, Rapid Communications in Mass Spectrometry, 7, 646-650 (1993).
11. M. Feist, I. Lamprecht and F. Müler, Thermochimica Acta, 458, 162-170 (2007).
12. Y. Shashoua, ‘Degradation and inhibitive conservation of Baltic amber in museum collections’, The National Museum of Denmark, 2002.
13. Y. Shashoua, M.-B. L. D. Berthelsen and O. F. Nielsen, J. Raman Spectrosc., 37, 1221-1227 (2006).
14. K. L. Sobeih, M. Baron and J. Gonzalez-Rodriguez, J. Chromatography A, 1186, 51-66 (2008).
15. J. M. Challinor, J. Anal. Applied Pyrol., 37, 185-199 (1996).