Article Detail

Home > Article Detail
  • P-ISSN 1225-0163
  • E-ISSN 2288-8985

Article Contents

    Analysis of germanium in rock and sediment by ICP/MS after ammonium bifluoride(NH4HF2) digestion

    Analytical Science and Technology / Analytical Science and Technology, (P)1225-0163; (E)2288-8985
    2013, v.26 no.6, pp.375-380
    https://doi.org/10.5806/AST.2013.26.6.375


    • Downloaded
    • Viewed

    Abstract

    Ammonium biflouride (NH4HF2) digestion was studied for germanium analysis in rock and sediment by inductively coupled plasma mass spectrometry (ICP/MS). QLO-1 and SDO-1 are used for reference materials from USGS. Sediment, basalt and ball clay for GeoPT were chosen as real samples. The loss of germanium in open vessel digestion was well known which can be caused by easy transformation to volatile compounds. But ammonium bifluoride digestion could suppress loss of germanium in open vessel digestion. Germanium recovery was not influenced by hydrogen peroxide with ammonium bifluoride digestion. Furthermore, the new method was simple and rapid in germanium analysis by ICP/MS. MDL(method detection limit) was 0.015 μg/g and germanium recovery was 106~128%.

    keywords
    germanium analysis, ammonium bifluoride, rock and sediment, open vessel digestion, ICP/MS


    Reference

    1

     N. Greenwood and A. Earnshaw, ‘In Chemistry of the elements’, Pergamon press: Oxford, U. K. (1984).

    2

     J. R. Castillo, J. Lanaja and J. Aznare, Analyst, 107, 89-95 (1982).

    3

     L. Halicz, Analyst, 110, 943-946 (1985).

    4

     T. Nakahara and T. Wasa, Microchem. J., 49, 202-212 (1994).

    5

     M. Thompson, B. Pahlavanpour, S. J. Walton and G. G. Kirkbright, Analyst, 103, 705-713 (1978).

    6

     J. W. Hershey and P. N. Keliher, Spectrochim. Acta Part B, 41(7) 713-723 (1986).

    7

     B. Welz and M. Melcher, Anal. Chim. Acta, 131, 17-25 (1981).

    8

     J. Agget and G. Boyes, Analyst, 114, 1159-1161 (1989).

    9

     A. D’Ulivo, L. Lampugnani and R. Zamboni, Spectrochim. Acta Part B, 47(7), 619-631 (1992).

    10

     X. P. Yan and Z. M. Ni, Anal. Chim. Acta, 291, 89-105 (1994).

    11

     I. D. Brindle, X. C. Le and X. F. Li, J. Anal. At. Spectrom., 4, 227-232 (1989).

    12

     M. Willbold, K. P. Jochum, I. Raczek, M. A. Amini, B. Stoll and A. W. Hofmann, Anal. Bioanal. Chem., 377, 117-125 (2003).

    13

     X. D. Cao, Y. Chen, Z. M. Gu and X. R. Wang, Intern. J. Environ. Anal. Chem., 76, 295-309 (2000).

    14

     E. Chajduk, I. Bartosiewicz, M. Pyszynska, J. Chwastowska and H. Polkowska-Motrenko, J. Radioanal. Nucl. Chem., 295, 1913-1919 (2013).

    15

     R. A. Nadkarni and R. I. Botto, Appl. Spectrosc., 38, 595-598 (1984).

    16

     U. Husam, E. Abbasi, Ahmet and A. Eroglu, Anal. Sci., 17, 559-560 (2001).

    17

     R. A. Davidson, D. D. Harbuck and D. D. Hammargren, Atomic Spectrosc., 11, 7-12 (1990).

    18

     H. S. Shin, M. S. Choi and K. J. Kim, J. Korean. Chem. Soc., 41(8), 399-405 (1997).

    19

     W. Zhang, Z. C. Hu, Y. S. Liu, H. H. Chen, S. Gao and R. M. Gaschnig, Anal. Chem., 84, 10686-10693 (2012).

    20

     A. N. D’yachenko and R. I. Kraidenko, Russian Journal of Applied Chemistry, 81, 952-955 (2008).

    21

     K. E. Jarvis and A. L. Gray, ‘Handbook of inductively coupled plasma mass spectrometry’, Chapman and Hall, New York, 1992.

    22

     S. Farias and P. Smichowski, J. Anal. At. Spectrom., 14, 809-814 (1999).

    23

     N. Zhe-Ming, J. Anal. At. Spectrom., 10, 747-751 (1995).

    상단으로 이동

    Analytical Science and Technology