- P-ISSN 1225-0163
- E-ISSN 2288-8985
본 연구에서는 암석과 퇴적물 시료를 대상으로 이플루오린화 암모늄을 이용한 시료 분해법을 적용하여 open vessel digestion 후 유도결합 플라즈마 질량분석법(Inductively coupled plasma mass spectrometry, ICP/MS)으로 게르마늄을 분석하였다. 미국 지질조사소 표준물질 중 QLO-1, SDO-1을 사용하였고, 실제 시료로 GeoPT용 퇴적물, 현무암, 점토를 사용하였다. 휘발하여 손실되기 쉬운 것으로 알려진 게르마늄을 이플루오린화 암모늄(NH4HF2) 시료 분해법을 사용함으로서 게르마늄 휘발 억제와 동시에 암석 및 퇴적물을 open vessel digestion하에서 간단하고 빠르게 분해 가능하였으며, 또한 이플루오린화 암모늄 분해법에 과산화수소를 함께 사용해도 게르마늄의 회수율에 영향을 끼치지 않았다. ICP/MS에의한 게르마늄 분석 결과, MDL (method detection limit)은 0.015 μg/g, 게르마늄 회수율은 106~128% 이었다.
Ammonium biflouride (NH4HF2) digestion was studied for germanium analysis in rock and sediment by inductively coupled plasma mass spectrometry (ICP/MS). QLO-1 and SDO-1 are used for reference materials from USGS. Sediment, basalt and ball clay for GeoPT were chosen as real samples. The loss of germanium in open vessel digestion was well known which can be caused by easy transformation to volatile compounds. But ammonium bifluoride digestion could suppress loss of germanium in open vessel digestion. Germanium recovery was not influenced by hydrogen peroxide with ammonium bifluoride digestion. Furthermore, the new method was simple and rapid in germanium analysis by ICP/MS. MDL(method detection limit) was 0.015 μg/g and germanium recovery was 106~128%.
N. Greenwood and A. Earnshaw, ‘In Chemistry of the elements’, Pergamon press: Oxford, U. K. (1984).
J. R. Castillo, J. Lanaja and J. Aznare, Analyst, 107, 89-95 (1982).
L. Halicz, Analyst, 110, 943-946 (1985).
T. Nakahara and T. Wasa, Microchem. J., 49, 202-212 (1994).
M. Thompson, B. Pahlavanpour, S. J. Walton and G. G. Kirkbright, Analyst, 103, 705-713 (1978).
J. W. Hershey and P. N. Keliher, Spectrochim. Acta Part B, 41(7) 713-723 (1986).
B. Welz and M. Melcher, Anal. Chim. Acta, 131, 17-25 (1981).
J. Agget and G. Boyes, Analyst, 114, 1159-1161 (1989).
A. D’Ulivo, L. Lampugnani and R. Zamboni, Spectrochim. Acta Part B, 47(7), 619-631 (1992).
X. P. Yan and Z. M. Ni, Anal. Chim. Acta, 291, 89-105 (1994).
I. D. Brindle, X. C. Le and X. F. Li, J. Anal. At. Spectrom., 4, 227-232 (1989).
M. Willbold, K. P. Jochum, I. Raczek, M. A. Amini, B. Stoll and A. W. Hofmann, Anal. Bioanal. Chem., 377, 117-125 (2003).
X. D. Cao, Y. Chen, Z. M. Gu and X. R. Wang, Intern. J. Environ. Anal. Chem., 76, 295-309 (2000).
E. Chajduk, I. Bartosiewicz, M. Pyszynska, J. Chwastowska and H. Polkowska-Motrenko, J. Radioanal. Nucl. Chem., 295, 1913-1919 (2013).
R. A. Nadkarni and R. I. Botto, Appl. Spectrosc., 38, 595-598 (1984).
U. Husam, E. Abbasi, Ahmet and A. Eroglu, Anal. Sci., 17, 559-560 (2001).
R. A. Davidson, D. D. Harbuck and D. D. Hammargren, Atomic Spectrosc., 11, 7-12 (1990).
H. S. Shin, M. S. Choi and K. J. Kim, J. Korean. Chem. Soc., 41(8), 399-405 (1997).
W. Zhang, Z. C. Hu, Y. S. Liu, H. H. Chen, S. Gao and R. M. Gaschnig, Anal. Chem., 84, 10686-10693 (2012).
A. N. D’yachenko and R. I. Kraidenko, Russian Journal of Applied Chemistry, 81, 952-955 (2008).
K. E. Jarvis and A. L. Gray, ‘Handbook of inductively coupled plasma mass spectrometry’, Chapman and Hall, New York, 1992.
S. Farias and P. Smichowski, J. Anal. At. Spectrom., 14, 809-814 (1999).
N. Zhe-Ming, J. Anal. At. Spectrom., 10, 747-751 (1995).