Article Detail

Home > Article Detail
  • P-ISSN 1225-0163
  • E-ISSN 2288-8985

Article Contents

    Development of intracellular organelle markers using modified glycolipid-binding peptides in mammalian cells

    Analytical Science and Technology / Analytical Science and Technology, (P)1225-0163; (E)2288-8985
    2015, v.28 no.1, pp.65-71
    https://doi.org/10.5806/AST.2015.28.1.65



    • Downloaded
    • Viewed

    Abstract

    Intracellular organelles in eukaryotic cells play important roles in many cellular functions. Intracellulartrafficking of many proteins to specific intracellular organelles is tightly regulated by various mechanisms in cells. Therefore, elucidating the targeting mechanism of novel markers for intracellular organelles is important for cellularphysiology and pathology. In this study, we tried to identify the peptides which could bind to specific glycolipidin cellular membrane using GFP-fused glycolipid-binding peptides, and analyzed their cellular localization. As aresult, we could identify mitochondria-, Golgi- or plasma membrane-targeting peptides. Furthermore, we found thatthe plasma membrane-targeting peptide was localized to the plasma membrane via electrostatic interactions. Thus,our results suggest that various glycolipid-binding peptides could be used as intracellular organelles markers.

    keywords
    glycolipid-binding peptide, intracellular organelles, marker, plasma membrane, electrostatic interaction


    Reference

    1

    1. T. Nilsson and G. Warren, Curr. Opin. Cell Biol., 6(4), 517-521 (1994).

    2

    2. K. Bos, C. Wraight and K. K. Stanley, EMBO J, 12(5), 2219-2228 (1993).

    3

    3. D. J. Jang, S. W. Park and B. K. Kaang, BMB Rep., 42(1), 1-5 (2009).

    4

    4. G. Di Paolo and P. De Camilli, Nature, 443(7112), 651-657 (2006).

    5

    5. T. Yeung, G. E. Gilbert, J. Shi, J. Silvius, A. Kapus and S. Grinstein, Science, 319(5860), 210-213 (2008).

    6

    6. K. H. Kim, Y. W. Jun, Y. Park, J. A. Lee, B. C. Suh, C. S. Lim, Y. S. Lee, B. K. Kaang and D. J. Jang, J Biol Chem., 289(37), 25797-25811 (2014).

    7

    7. J. Kanaani, G. Patterson, F. Schaufele, J. Lippincott- Schwartz and S. Baekkeskov, J. Cell Sci., 121(Pt 4), 437-449 (2008).

    8

    8. G. S. Baillie, E. Huston, G. Scotland, M. Hodgkin, I. Gall, A. H. Peden, C. MacKenzie, E. S. Houslay, R. Currie, T. R. Pettitt, A. R. Walmsley, M. J. Wakelam, J. Warwicker and M. D. Houslay, J. Biol. Chem., 277(31), 28298-28309 (2002).

    9

    9. Y. Ma and S. S. Taylor, J. Biol. Chem., 283(17), 11743-11751 (2008).

    10

    10. R. Mahfoud, N. Garmy, M. Maresca, N. Yahi, A. Puigserver and J. Fantini, J. Biol. Chem., 277(13), 11292-11296 (2002).

    11

    11. T. Matsubara, K. Iijima, M. Nakamura, T. Taki, Y. Okahata and T. Sato, Langmuir, 23(2), 708-714 (2007).

    12

    12. N. H. Guo, H. C. Krutzsch, E. Negre, T. Vogel, D. A. Blake and D. D. Roberts, Proc. Natl. Acad Sci. U S A, 89(7), 3040-3044 (1992).

    13

    13. J. S. Liang, B. M. Schreiber, M. Salmona, G. Phillip, W. A. Gonnerman, F. C. de Beer and J. D. Sipe, J. Lipid Res., 37(10), 2109-2116 (1996).

    상단으로 이동

    Analytical Science and Technology