Article Detail

Home > Article Detail
  • P-ISSN 1225-0163
  • E-ISSN 2288-8985

Article Contents

    Optimization of hydrochar generated from real food waste using titration methods

    Analytical Science and Technology / Analytical Science and Technology, (P)1225-0163; (E)2288-8985
    2015, v.28 no.1, pp.40-46
    https://doi.org/10.5806/AST.2015.28.1.40




    • Downloaded
    • Viewed

    Abstract

    Hydrochar has been generated from food waste via hydrothermal carbonization (HTC) reaction. As asolid product of HTC reaction, hydrochar has a great potential as an adsorbent of pollutants from the various media. The surface area and pore volumes are very important parameters to be served as an adsorbent. It requires anexpensive equipment and consumes time to measure those parameter. Therefore, titration methods including iodineand methylene blue adsorption were evaluated to be correlated with that of BET analysis. Even though the absolutevalues of the computed surface area and pore volumes were not able to be matched directly, the patterns of changewere successfully correlated. Among the reaction conditions, the reaction time and temperature at 230 oC for 4 hwas determined as an optimization condition, which confirmed by titration method and BET analysis. Titrationmethod for surface area and pore volumes computed by combination of iodine and methylene blue adsorbing valueswould be a simple and fast way of determining the optimization condition for hydrochar as an adsorbent producedby HTC reaction

    keywords
    hydrochar, iodine number, methylene blue number, surface area, pore volume, adsorbent, hydrothermal carbonization reaction


    Reference

    1

    1. Ministry of Environment, Environmental Statistics Yearbook, 25(1), 34, Korea (2012).

    2

    2. C. A. Nunes and M. C. Guerreiro, Quim. Nova, 34(3), 472-476 (2011).

    3

    3. F. Raposo, M. A. De La Rubia and R. Borja, J. Hazard. Mater., 165(1-3), 291-299 (2009).

    4

    4. S. Bae and E. Koh, J. Kor. Soc. Environ. Anal., 14(4), 228-233 (2011).

    5

    5. A. A. El-Hendawya, S. E. Samrab and B. S. Girgis, Colloids Surf. Physicochem. Eng. Aspects, 180(3), 209-221 (2001).

    6

    6. J. Lehmann and S. Joseph, ‘Biochar for environmental management: Science and technology’, p120, UK and USA, 2009.

    7

    7. A. Mukherjeea, A. R. Zimmermana and W. Harris, Geoderdma, 163(3-4), 247-255 (2011).

    8

    8. S. Brunauer, P. H. Emmett and E. Teller, J. Am. Chem. Soc., 60(2), 309-319 (1938).

    9

    9. J. A. Libra, K. S. Ro, C. Kammann, A. Funke, N. D. Berge, Y. Neubauer, M.-M., Titirici, C. Fhner, O. Bens, J. Kern and E. K-Heinz, Biofuels, 2(1), 89-124 (2011).

    10

    10. J. G. Lynam, M. T. Reza, W. Yan, V. R. Vsquez, C. J. Coronella, Biomass Conv. Bioref., DOI 10.1007/s13399-014-0137-3, 1-9 (2014).

    11

    11. C.-X. Chen, B. Huang, T. Li and G.-F. Wu, Bioresources, 7(4), 5109-5116 (2012).

    12

    12. Z. Liu, A. Quek, H, S. Kent and R. Balasubramanian, Fuel, 103, 943-949 (2013).

    13

    13. S. M. Heilmann, H. T. Davis, L. R. Jader, P. A. Lefebvre, M. J. Sadowsky, F. J. Schendel, M. G. Von Keitz and K. J. Valentas, Biomass Bioenergy, 34(6), 875-882 (2010).

    14

    14. Y. Xue, B. Gao, Y. Yao, M. Inyang, M. Zhang, A. R. Zimmerman, K. S. Ro, Chem. Eng. J., 200(15), 673-680 (2012).

    15

    15. R. Pusker, G. M. Jose Luis, K. Sandeep, C. Xiaoyan, M. Jingdong and S. Gary, J. Environ. Manage., 109, 61-69 (2012).

    16

    16. E. Marris, Nature, 442, 624-626 (2006).

    상단으로 이동

    Analytical Science and Technology