• P-ISSN1225-0163
  • E-ISSN2288-8985
  • SCOPUS, ESCI, KCI

Article Detail

Home > Article Detail
  • P-ISSN 1225-0163
  • E-ISSN 2288-8985

Article Contents

    QSPR analysis for predicting heat of sublimation of organic compounds

    Analytical Science and Technology / Analytical Science and Technology, (P)1225-0163; (E)2288-8985
    2015, v.28 no.3, pp.187-195
    https://doi.org/10.5806/AST.2015.28.3.187




    • Downloaded
    • Viewed

    Abstract

    The heat of sublimation (HOS) is an essential parameter used to resolve environmental problems in the transfer of organic contaminants to the atmosphere and to assess the risk of toxic chemicals. The experimental measurement of the heat of sublimation is time-consuming, expensive, and complicated. In this study, quantitative structural property relationships (QSPR) were used to develop a simple and predictive model for measuring the heat of sublimation of organic compounds. The population-based forward selection method was applied to select an informative subset of descriptors of learning algorithms, such as by using multiple linear regression (MLR) and the support vector machine (SVM) method. Each individual model and consensus model was evaluated by internal validation using the bootstrap method and y-randomization. The predictions of the performance of the external test set were improved by considering their applicability to the domain. Based on the results of the MLR model, we showed that the heat of sublimation was related to dispersion, H-bond, electrostatic forces, and the dipole-dipole interaction between inter-molecules.

    keywords
    Heat of sublimation, QSPR, MLR, SVM, consensus model


    Reference

    1

    1. K. Nakajoh, E. Shibata, T. Todoroki, A. Ohara, K. Nishizawa and T. Nakamura, Environ. Toxicol. Chem., 25(2), 327-336 (2006).

    2

    2. P. Politzer, Y. Ma, P. Lane and M. C. Concha, Int. J. Quantum Chem, 105(4), 341-347 (2005).

    3

    3. F. Gharagheizi, P. Ilani-Kashkouli, W. E. Acree, A. H. Mohammadi and D. Ramjugernath, Fluid Phase Equilib., 354, 265-285 (2013).

    4

    4. F. Gharagheizi, Thermochim. Acta, 469(1-2), 8-11 (2008).

    5

    5. E. H. Jean, J. H. J. Park, Jin Hee and S. K. Lee, Anal. Sci. Technol., 24(6), 533-543 (2011).

    6

    6. I. S. Song, J. Y. Cha and S. K. Lee, Anal. Sci. Technol., 24(6), 544-555 (2011).

    7

    7. W. Acree and J. S. Chickos, J. Phys. Chem. Ref. Data, 39(4), 043101 (2010).

    8

    8. M. A. V. Roux, M. Temprado, J. S. Chickos and Y. Nagano, J. Phys. Chem. Ref. Data, 37(4), 1855-1996 (2008).

    9

    9. PreADMET Ver.2.0.2.0, BMDRC: Seoul Korea, 2007.

    10

    10. G. Schneider, W. Neidhart, T. Giller and G. Schmid, Angew. Chem. Int. Ed. Engl., 38(19), 2894-2896 (1999).

    11

    11. RapidMiner Ver.5.3.012, Rapid-I: Stockumer, Germany.

    12

    12. C. Cortes and V. Vapnik, Mach. Learn., 20(3), 273-297 (1995).

    13

    13. B. Schölkopf, A. J. Smola, R. C. Williamson,and P. L. Bartlett, Neural Comput., 12(5), 1207-1245 (2000).

    14

    14. A. Tropsha, P. Gramatica and V. K. Gombar, QSAR Combi. Sci., 22(1), 69-77 (2003).

    상단으로 이동

    Analytical Science and Technology