ACOMS+ 및 학술지 리포지터리 설명회

  • 한국과학기술정보연구원(KISTI) 서울분원 대회의실(별관 3층)
  • 2024년 07월 03일(수) 13:30
 

  • P-ISSN1225-0163
  • E-ISSN2288-8985
  • SCOPUS, ESCI, KCI

논문 상세

Home > 논문 상세
  • P-ISSN 1225-0163
  • E-ISSN 2288-8985

논문 상세

    ICP-AES를 이용한 토양 시료 중 비소 분석 방법 개선

    Improvement of analytical methods for arsenic in soil using ICP-AES

    분석과학 / Analytical Science and Technology, (P)1225-0163; (E)2288-8985
    2015, v.28 no.6, pp.409-416
    https://doi.org/10.5806/AST.2015.28.6.409
    이홍길 (국립환경과학원)
    김지인 (국립환경과학원)
    김록영 (국립환경과학원)
    고형욱 (국립환경과학원)
    김태승 (국립환경연구원)
    윤정기 (국립환경과학원)
    • 다운로드 수
    • 조회수

    초록

    ICP-AES는 넓은 검량범위 및 다성분 동시분석이라는 장점이 있어 많은 연구소에서 사용되지만비소의 경우 토양 중에 존재하는 성분들이 함께 방출되어 스펙트럼 간섭이 일어나 농도가 과대/과소평가 될 수 있다. 본 연구에서는 표준 인증 물질(CRMs)과 현장 토양시료를 국내 토양오염 공정시험기준에의거하여 HG-AAS 및 ICP-AES로 분석하여 발생하는 문제점을 살펴보았다. HG-AAS 분석결과는 모든CRM에 대해 90.8~106.3%의 정확도를 보인 반면, ICP-AES는 비소의 농도가 낮으며 철 및 알루미늄의 농도가 높은 CRM에서 정확도를 만족하지 못했으며 CRM030의 경우 193.696 nm에서 정확도가 39% 미만으로 나타났다. 비소의 측정파장에서 발생하는 간섭영향을 살펴본 결과, 193.696 nm 부근에서 50 mg/ L 철 및 알루미늄에 의해 각각 유의한 수준의 partial overlap, sloping background가 발생하였으나 188.980 nm에서는 간섭이 미미하거나 없는 것으로 확인되었다. 현장시료를 ICP-AES로 측정한 결과 각각 188.980 nm, 193.696 nm에서 저농도/고농도 비소가 HG-AAS로 측정한 결과와 가장 유사한 것으로 나타났다. 따라서, ICP-AES를 분석장비로 사용할 경우 시료 매질, 분석 조건 등에 따라 간섭영향이 달라질 수 있으므로 분석자는 비소의 농도에 따라 적절한 파장을 선택하는 것이 중요하다. 또한 ICP-AES 분석에서 간섭영향이 확인되는 경우에는 HG-AAS와 교차분석 등의 방법을 고려해야 한다. ICP-AES 분석의 대안으로검토한 HG-ICP-AES는 HG로 간섭을 줄여 검출한계가 향상되었으며 HG-AAS에 비해 넓은 검량범위를나타내 적절한 분석방법으로 평가되었다.

    keywords
    arsenic, soil, ICP-AES, hydride-generation (HG), AAS

    Abstract

    ICP-AES has been used in many laboratories due to the advantages of wide calibration range and multi-element analysis, but it may give erroneous results and suffer from spectral interference due to the large number of emission lines associated with each element. In this study, certified reference materials (CRMs) and field samples were analyzed by ICP-AES and HG-AAS according to the official Korean testing method for soil pollution to investigate analytical problems. The applicability of HG-ICP-AES was also tested as an alternative method. HG-AAS showed good accuracies (90.8~106.3%) in all CRMs, while ICP-AES deviated from the desired range in CRMs with low arsenic and high Fe/Al. The accuracy in CRM030 was estimated as below 39% at the wavelength of 193.696 nm by ICP-AES. Significant partial overlaps and sloping background interferences were observed near to 193.696 nm with the presence of 50 mg/L Fe and Al. Most CRMs were quantified with few or no interferences of Fe and Al at 188.980 nm. ICP-AES properly assessed low and high level arsenic for field samples, at 188.980 nm and 193.696 nm, respectively. The importance of the choice of measurement wavelengths corresponding to relative arsenic level should be noted. Because interferences were affected by the sample matrix, operation conditions and instrument figures, the analysts were required to consider spectral interferences and compare the analytical performance of the recommended wavelengths. HG-ICP-AES was evaluated as a suitable alternative method for ICP-AES due to improvement of the detection limit, wide calibration ranges, and reduced spectral interferences by HG.

    keywords
    arsenic, soil, ICP-AES, hydride-generation (HG), AAS


    참고문헌

    1

    1. WHO, ‘arsenic and arsenic compounds, Environmental health criteria 224’, 2nd Ed., Geneva, Switzerland, 2001.

    2

    2. Alina Kabata-Pendias, In ‘Trace Elements in Soils and Plants’, 4th Ed., p353-355, CRC Press. Taylor & Francis group, 2011.

    3

    3. NIER, ‘Evaluation and establishment of the soil pollution standards(II)’, 2005.

    4

    4. Ministry of Environment, ‘Annual report of soil moni- toring network and soil contamination survey in 2013’, 2014.

    5

    5. M. Tighe, P. Lockwood, S. Wilson and L. Lisle, Commun Soil Sci Plant Anal., 35(9&10), 1369-1385 (2004).

    6

    6. Geological Survey of Finland publication - Arsenic, http://www.weppi.gtk.fi/publ/foregsatlas/text/As.pdf, Assessed 7 Oct 2015.

    7

    7. Ministry of Environment Notification No. 2013-113 (2013.09.12), Republic of Korea.

    8

    8. M. Csuros and C. Csuros, In ‘Environmental sampling and analysis for metals’, p153-157, CRC Press, 2002.

    9

    9. UK Environment Agency, ‘The determination of metals in solid environmental samples’, 2006.

    10

    10. USEPA method 6010C, http://www.epa.gov/osw/hazard/testmethods/sw846/pdfs/6010c.pdf, Assessed 4 May 2015.

    11

    11. K. A. Hudson-Edwards, S. L. Houghton and A. Osborn, Trends Analyt Chem., 23(10-11), 745-752 (2004).

    12

    12. Ministry of Environment Notification No. 2015-76 (2015. 6. 3), Republic of Korea.

    13

    13. J. Dedina and D. L. Tsalev, In ‘Hydride Generation Atomic Absorption Spectrometry’, J. D. p182, Winefordner Ed., Wiley, Chichester, West Sussex, UK, 1995.

    14

    14. ISO Reference No. 22036:2008(E), 1st Ed., 2008.

    15

    15. S. D. Chapnick, L. C. Pitts and N. C. Rothman, Remediat. J., 20(4), 39-59 (2010).

    상단으로 이동

    분석과학