Article Detail

Home > Article Detail
  • P-ISSN 1225-0163
  • E-ISSN 2288-8985

Article Contents

    Optimization of fractionation efficiency (FE) and throughput (TP) in a large scale splitter less full-feed depletion SPLITT fractionation (Large scale FFD-SF)

    Analytical Science and Technology / Analytical Science and Technology, (P)1225-0163; (E)2288-8985
    2015, v.28 no.6, pp.453-459
    https://doi.org/10.5806/AST.2015.28.6.453






    • Downloaded
    • Viewed

    Abstract

    Split-flow thin cell fractionation (SPLITT fractionation, SF) is a particle separation technique that allows continuous (and thus a preparative scale) separation into two subpopulations based on the particle size or the density. In SF, there are two basic performance parameters. One is the throughput (TP), which was defined as the amount of sample that can be processed in a unit time period. Another is the fractionation efficiency (FE), which was defined as the number % of particles that have the size predicted by theory. Full-feed depletion mode (FFD-SF) have only one inlet for the sample feed, and the channel is equipped with a flow stream splitter only at the outlet in SF mode. In conventional FFD-mode, it was difficult to extend channel due to splitter in channel. So, we use large scale splitter-less FFD-SF to increase TP from increase channel scale. In this study, a FFD-SF channel was developed for a large-scale fractionation, which has no flow stream splitters (‘splitter less’), and then was tested for optimum TP and FE by varying the sample concentration and the flow rates at the inlet and outlet of the channel. Polyurethane (PU) latex beads having two different size distribution (about 3~7 μm, and about 2~30 μm) were used for the test. The sample concentration was varied from 0.2 to 0.8% (wt/vol). The channel flow rate was varied from 70, 100, 120 and 160 mL/min. The fractionated particles were monitored by optical microscopy (OM). The sample recovery was determined by collecting the particles on a 0.1 μm membrane filter. Accumulation of relatively large micron sized particles in channel could be prevented by feeding carrier liquid. It was found that, in order to achieve effective TP, the concentration of sample should be at higher than 0.4%.

    keywords
    SPLITT, Throughput, Fractionation efficiency, Sample recovery, Separation


    Reference

    1

    1. J. C. Giddings, Sep. Sci. Technol., 20(9-10), 749-768 (1985).

    2

    2. J. C. Giddings, Sep. Sci. Technol., 27(11), 1489-1504 (1992).

    3

    3. S. R. Springston, M. N. Myers and J. Calvin Giddings, Anal. Chem., 59(2), 344-350 (1987).

    4

    4. Y. Gao, M. N. Myers, B. N. Barman and J. Calvin Giddings, Part. Sci.Technol., 9(3-4), 105-118 (1991).

    5

    5. S. Levin, M. N. Myers and J. C. Giddings, Sep. Sci. Technol., 24(14), 1245-1259 (1989).

    6

    6. P. S. Williams, S. Levin, T. Lenczycki and J. C. Giddings, Ind. Eng. Chem. Res., 31(9), 2172-2181 (1992).

    7

    7. C. B. Fuh and J. C. Giddings, Sep. Sci. Technol., 32(18), 2945-2967 (1997).

    8

    8. C. B. Fuh, M. N. Myers and J. C. Giddings, Anal. Chem., 64(24), 3125-3132 (1992).

    9

    9. S. Levin and J. C. Giddings, J. Chem. Technol. Biotechnol., 50(1), 43-56(1991).

    10

    10. J. Zhang, P. S. William, M. N. Myers and J. C. Giddings, Sep. Sci. Technol., 29(18), 2493-2522 (1994).

    11

    11. C. B. Fuh, E. M. Trujillo and J. C. Giddings, Sep. Sci. Technol., 30(20), 3861-3876 (1995).

    12

    12. Y. Jiang, A. Kummerow and M. Hansen, J. Microcolumn Sep., 9(4), 261-273 (1997).

    13

    13. Y. Jiang, M. E. Miller, M. E. Hansen, M. N. Myers and P. S. Williams, J. Magn. Magn. Mater., 194(1), 53-61 (1999).

    14

    14. R. G. Keil, E. Tsamakis, C. B. Fuh, J. C. Giddings and J. I. Hedges, Geochim.Cosmochim. Acta, 58(2), 879-893 (1994).

    15

    15. C. Contado, F. Dondi, R. Beckett and J. C. Giddings, Anal. Chim. Acta, 345(1-3), 99-110 (1997).

    16

    16. F. Dondi, C. Contado, G. Blo and S. Garçia Martin, Chromatographia, 48(9-10), 643-654 (1998).

    17

    17. M. H. Moon, D. Kang, H. Lim, J. E. Oh and Y. S. Chang, Environ. Sci. Technol., 36(20), 4416-4423 (2002).

    18

    18. M. H. Moon, S. G. Yang, J. Y. Lee and S. Lee, Anal. Bioanal. Chem., 381(6), 1299-1304 (2005).

    19

    19. C. B. Fuh, M. N. Myers and J. C. Giddings, Ind. Eng. Chem. Res., 33(2), 355-362 (1994).

    20

    20. S. Lee, T. W. Lee, S. K. Cho, S. T. Kim, D. Y. Kang, H. Kwen, S. K. Lee and C. H. Eum, Microchem. J., 95(1), 11-19 (2010).

    21

    21. C. Contado and F. Dondi, J. Sep. Sci., 26(5), 351-362 (2003).

    22

    22. A. De Momi and J. R. Lead, Sci. Total Environ., 405(1-3), 317-323 (2008).

    23

    23. Y. Yoo, J. Choi, W. J. Kim, C. H. Eum, E. C. Jung and S. Lee, Anal. Sci. Technol., 27(1), 34-40 (2014).

    24

    24. H. J. Choi, W. J. Kim, C. H. Eum and S. Lee, Anal. Sci. Technol., 26(1), 34-41 (2013).

    25

    25. S. Lee, J. Y. Lee, T. W. Lee, E. C. Jung and S. K. Cho, Bull. Korean Chem. Soc., 32(12), 4291-4296 (2011).

    • Downloaded
    • Viewed
    • 0KCI Citations
    • 0WOS Citations

    Recommanded Articles

    상단으로 이동

    Analytical Science and Technology