- P-ISSN 1225-0163
- E-ISSN 2288-8985
메틸나이트로이미다졸계 유도체들에 관한 화약 성능과 충격감도 간의 이차원 분석이 이들 물질의 효용성을 판단하기 위해 진행되었다. 화약 성능은 Cheetah 프로그램으로 계산되었으며, 충격감도는 인공신경망 연구로 예측했다. 연속적인 나이트로기의 치환이 분자들을 민감하게 하지만 메틸트라이나이트이미다졸까지도 비교적 안전한 상태를 유지하는 것으로 예측된다. 최근에 국방과학연구소에서는 성능과감도를 X, Y축에 도시하고 신규화약물질의 유용성을 전체적으로 분석하는 방안을 개발하였다. 이들 성능-감도 이차원 그래프에 따르면 메틸다이나이트로이미다졸계 유도체들은 둔감화약조성에 사용이 가능할것으로 판단되고, 반면 메틸트라이나이트로이미다졸은 고폭화약조성에 사용할 수 있을 것으로 판단된다.
Two-dimensional analysis between the explosive performance and the impact sensitivity for methylnitroimidazole derivatives was performed to understand where these new energetic molecules could be utilized. The explosive performance was analyzed with the Cheetah program, while the impact sensitivity was predicted using neural network analysis. Successive nitration of methylimidazole made the molecule more sensitive, but methyltrinitroimidzole appeared to have a relatively good safety characteristic. We recently developed a novel method to analyze the potential usage of new energetic molecules using a two-dimensional chart, where the explosive performance and the impact sensitivity were located on the X-axis and Y-axis, respectively. An analysis of a two-dimensional plot between the performance and the sensitivity indicated that methyldinitroimidazole would be useful for insensitive explosive formulations, while methyltrinitroimidazole was forecasted for use as an ingredient for high explosive formulations.
1. M. B. Talawar, R. Sivabalan, M. Anniyappan, G. M. Gore, S. N. Asthana, and B. R. Gandhe, Combust., Expl., Shock Waves, 43, 62-72 (2007).
2. P.-A. Persson, R. Holmberg and J. Lee, ‘Rock Blastings and Explosives Engineering’, CRC Press, Boca Raton, FL, 1993.
3. J. P. Agrawal, Progress Energy Combust. Sci., 24, 1-30 (1998).
4. S. Borman, S. Chem. & Eng. News, Jan. 17, 18-22 (1994).
5. S. Gordon and B. J. McBride, ‘Computer Program for Calculation of Complex Chemical Equilibrium Compositions, Rocket Performance, Incident and Reflected Shocks, and Chapman-Jouguet Detonations’, NASA SP-273, National Aeronautics and Space Adminstration, Washinton, D.C., 1976.
6. B. M. Dobratz and P. C. Crawford, ‘LLNL Explosives Handbook. Properties of Chemical Explosives and Explosive Simulants’, Lawrence Livermore National Loboratoty, Livermore, CA, 1985.
7. T. P. Liddiard and D. Price, ‘The Expanded Large Scale Gap Test’, NSWC TR 86-32, Naval Surface Weapons Center, MD, 1987.
8. S.G. Cho, ‘A Systematic Procedure to Predict Explosive Performance and Sensitivity of Novel High-Energy Molecules in ADD, ADD Method-1’ In ‘Handbook of Material Science Research’, p431, C. Rene, E. Turcotte, Eds., Nova Science Publishers, New York, 2010.
9. M. J. Frisch et al., Gaussian 03, Revision D.02, Gaussian, Inc., Wallinford, CT, 2004.
10. S. G. Cho, K. T. No, E. M. Goh, J. K. Kim, J. H. Shin, Y. D. Joo, and S. Seong, Bull. Korean Chem. Soc., 26, 399-408 (2005).
11. L. E. Fried, W. M. Howard and P. C. Souers, ‘Cheetah 2.0 User Manual’, Lawrence Livermore National Laboratory Report UCRL MA 117541 Rev. 5, 1998.
12. O.K. Rim, Anal. Sci. Technol., 28, 347-352 (2015).
13. H. Nefati, J.-M. Cense, J.-J. Legendre, J. Chem. Inf. Comput. Sci., 36, 804-810 (1996).
14. C. B. Storm, J. R. Stine, J. F. Kramer, Sensitivity Relationships in Energetic Materials. LA-UR-89-2936, Los Alamos Nat. Lab., NM, 1989.
15. S. K. Lee, S. G. Cho, J. S. Park, Y. Y. In and K. T. No, Bull. Korean Chem. Soc., 33, 855-861 (2012).
16. X. Su, X. Cheng, C. Meng and X. Yuan, J. Hazard. Mater., 161, 551-558 (2009).
17. J. R. Cho, K. J. Kim, S. G. Cho and J. K. Kim, J. Heterocyclic Chem., 39, 141-147 (2002).
18. P. Ravi, G. M. Gore, S. P. Tewari and A. K. Skider, J. Energ. Mat., 29, 209-227 (2011).
19. R. Meyer, J. Kohler and A. Homberg, ‘Explosives’, 5th Ed., Wiley-VCH, Weinhelm, Germany, 2002.