ACOMS+ 및 학술지 리포지터리 설명회

  • 한국과학기술정보연구원(KISTI) 서울분원 대회의실(별관 3층)
  • 2024년 07월 03일(수) 13:30
 

  • P-ISSN1225-0163
  • E-ISSN2288-8985
  • SCOPUS, ESCI, KCI

논문 상세

Home > 논문 상세
  • P-ISSN 1225-0163
  • E-ISSN 2288-8985

논문 상세

    대용량 splitter less full-feed depletion SPLITT 분획법(Large scale FFD-SF)에서의 분획효율(FE) 및시료처리량(TP)의 최적화

    Optimization of fractionation efficiency (FE) and throughput (TP) in a large scale splitter less full-feed depletion SPLITT fractionation (Large scale FFD-SF)

    분석과학 / Analytical Science and Technology, (P)1225-0163; (E)2288-8985
    2015, v.28 no.6, pp.453-459
    https://doi.org/10.5806/AST.2015.28.6.453
    음철헌 (한국지질자원연구원)
    노아람 (한남대학교 화학과)
    최재영 (한남대학교)
    유영석 (한남대학교 화학과)
    김운중 (한남대학교)
    이승호 (한남대학교)
    • 다운로드 수
    • 조회수

    초록

    Split-flow thin cell fractionation (SPLITT fractionation, SF)은 밀도와 입자 크기에 따라 입자성 물질이나 거대분자를 연속적으로 분리 및 분획하는 기술이다. SF 모드 중 full-feed depletion mode (FFD) 는 오직 한 개의 주입 구를 가지고 있으며, outlet에만 flow stream splitter가 존재한다. SPLITT은 두 가지의 중요 인자가 있다. 하나는 시간에 따라 통과되는 시료의 양 (throughput, TP)과 또 다른 하나는 이론에의해 예측된 크기를 가지는 입자들의 수 퍼센트로 정의하는 분획효율 (fractionation efficiency, FE)이다.. 기존 FFD 모드에서는 splitter가 outlet에 존재하여, 채널 규모를 확장시키는 데 제한이 있어 시료 처리량의 한계가 있다. 따라서 splitter를 제거하고 채널규모를 증가하여 시료 처리량을 대폭 증가시킬 수 있는 대규모중력장 FFD-SF 채널을 사용하였다. 따라서 이 논문에서는 대용량 중력장 FFD-SF의 TP와 FE 최적화를 위하여 시료농도와 유속변화로 실험을 진행하였다. 이 실험에서는 두 개의 다른 입자 분포 (3~7 μm, 2~30 μm) 를 가지는 Polyurethane (PU) latex beads가 사용되었다. 시료의 농도는 0.2~0.8% (wt/vol)을 사용하였으며, 채널의 유속은 70~160 mL/min을 사용하였다. 분획된 입자는 광학 현미경으로 확인하여 직접 크기 관찰을 하였으며 시료 회수율 (recovery)은 수집된 입자를 0.1 μm 맴브레인 필터로 거른 후 무게측정으로 실험하였다. 본 연구를 통해 fraction-a의 분획효율 (FE)은 이론에 따라 정확히 맞춰준다면 언제든 좋은 수치를 얻을 수 있다는 것이 확인되었고, 시료의 입자크기가 커서 채널에 쌓일 경우, 시료 회수율을 높이기 위해서는 이동상을 더 흘려주는 방법을 사용하면 효과적인 것을 확인하였다. 또한 효율적인 TP로 실험을 진행하기 위해서는 최소한 0.4% 농도는 사용해야 효율적인 분획이 이뤄진다는 것을 확인하였다.

    keywords
    SPLITT, Throughput, Fractionation efficiency, Sample recovery, Separation

    Abstract

    Split-flow thin cell fractionation (SPLITT fractionation, SF) is a particle separation technique that allows continuous (and thus a preparative scale) separation into two subpopulations based on the particle size or the density. In SF, there are two basic performance parameters. One is the throughput (TP), which was defined as the amount of sample that can be processed in a unit time period. Another is the fractionation efficiency (FE), which was defined as the number % of particles that have the size predicted by theory. Full-feed depletion mode (FFD-SF) have only one inlet for the sample feed, and the channel is equipped with a flow stream splitter only at the outlet in SF mode. In conventional FFD-mode, it was difficult to extend channel due to splitter in channel. So, we use large scale splitter-less FFD-SF to increase TP from increase channel scale. In this study, a FFD-SF channel was developed for a large-scale fractionation, which has no flow stream splitters (‘splitter less’), and then was tested for optimum TP and FE by varying the sample concentration and the flow rates at the inlet and outlet of the channel. Polyurethane (PU) latex beads having two different size distribution (about 3~7 μm, and about 2~30 μm) were used for the test. The sample concentration was varied from 0.2 to 0.8% (wt/vol). The channel flow rate was varied from 70, 100, 120 and 160 mL/min. The fractionated particles were monitored by optical microscopy (OM). The sample recovery was determined by collecting the particles on a 0.1 μm membrane filter. Accumulation of relatively large micron sized particles in channel could be prevented by feeding carrier liquid. It was found that, in order to achieve effective TP, the concentration of sample should be at higher than 0.4%.

    keywords
    SPLITT, Throughput, Fractionation efficiency, Sample recovery, Separation


    참고문헌

    1

    1. J. C. Giddings, Sep. Sci. Technol., 20(9-10), 749-768 (1985).

    2

    2. J. C. Giddings, Sep. Sci. Technol., 27(11), 1489-1504 (1992).

    3

    3. S. R. Springston, M. N. Myers and J. Calvin Giddings, Anal. Chem., 59(2), 344-350 (1987).

    4

    4. Y. Gao, M. N. Myers, B. N. Barman and J. Calvin Giddings, Part. Sci.Technol., 9(3-4), 105-118 (1991).

    5

    5. S. Levin, M. N. Myers and J. C. Giddings, Sep. Sci. Technol., 24(14), 1245-1259 (1989).

    6

    6. P. S. Williams, S. Levin, T. Lenczycki and J. C. Giddings, Ind. Eng. Chem. Res., 31(9), 2172-2181 (1992).

    7

    7. C. B. Fuh and J. C. Giddings, Sep. Sci. Technol., 32(18), 2945-2967 (1997).

    8

    8. C. B. Fuh, M. N. Myers and J. C. Giddings, Anal. Chem., 64(24), 3125-3132 (1992).

    9

    9. S. Levin and J. C. Giddings, J. Chem. Technol. Biotechnol., 50(1), 43-56(1991).

    10

    10. J. Zhang, P. S. William, M. N. Myers and J. C. Giddings, Sep. Sci. Technol., 29(18), 2493-2522 (1994).

    11

    11. C. B. Fuh, E. M. Trujillo and J. C. Giddings, Sep. Sci. Technol., 30(20), 3861-3876 (1995).

    12

    12. Y. Jiang, A. Kummerow and M. Hansen, J. Microcolumn Sep., 9(4), 261-273 (1997).

    13

    13. Y. Jiang, M. E. Miller, M. E. Hansen, M. N. Myers and P. S. Williams, J. Magn. Magn. Mater., 194(1), 53-61 (1999).

    14

    14. R. G. Keil, E. Tsamakis, C. B. Fuh, J. C. Giddings and J. I. Hedges, Geochim.Cosmochim. Acta, 58(2), 879-893 (1994).

    15

    15. C. Contado, F. Dondi, R. Beckett and J. C. Giddings, Anal. Chim. Acta, 345(1-3), 99-110 (1997).

    16

    16. F. Dondi, C. Contado, G. Blo and S. Garçia Martin, Chromatographia, 48(9-10), 643-654 (1998).

    17

    17. M. H. Moon, D. Kang, H. Lim, J. E. Oh and Y. S. Chang, Environ. Sci. Technol., 36(20), 4416-4423 (2002).

    18

    18. M. H. Moon, S. G. Yang, J. Y. Lee and S. Lee, Anal. Bioanal. Chem., 381(6), 1299-1304 (2005).

    19

    19. C. B. Fuh, M. N. Myers and J. C. Giddings, Ind. Eng. Chem. Res., 33(2), 355-362 (1994).

    20

    20. S. Lee, T. W. Lee, S. K. Cho, S. T. Kim, D. Y. Kang, H. Kwen, S. K. Lee and C. H. Eum, Microchem. J., 95(1), 11-19 (2010).

    21

    21. C. Contado and F. Dondi, J. Sep. Sci., 26(5), 351-362 (2003).

    22

    22. A. De Momi and J. R. Lead, Sci. Total Environ., 405(1-3), 317-323 (2008).

    23

    23. Y. Yoo, J. Choi, W. J. Kim, C. H. Eum, E. C. Jung and S. Lee, Anal. Sci. Technol., 27(1), 34-40 (2014).

    24

    24. H. J. Choi, W. J. Kim, C. H. Eum and S. Lee, Anal. Sci. Technol., 26(1), 34-41 (2013).

    25

    25. S. Lee, J. Y. Lee, T. W. Lee, E. C. Jung and S. K. Cho, Bull. Korean Chem. Soc., 32(12), 4291-4296 (2011).

    상단으로 이동

    분석과학